Technical Report ITL-24-8
September 1994

US Army Corps

of Engineers
Waterways Experiment
Station

= Transition to Ada
= by William A. Ward, Jr.
e University of South Alabama

"AD-A286 419 |

Approved For Public Release; Distribution Is Uniimited

94~35851
EETE

Prepared for U.S. Army Environmental Center

84 1,

The vontenis of this report are not 1o be used for adveriang,
publication. o promotioaal purposes Cdshion of trade names
dues nol coactitute sn olfiviasl endorwerient o approval ol thy e
ol such commenaal products

Technical Report ITL-94-8
September 1994

Transition to Ada

by William A Ward, Jr.

Faculty Court West 20

School of Computer and Infermation Sciences
University of Scuth Alabama

Mobile, AL 36688

Final report

Approved tor public release; distribution is unlimited

Prepared for U.S. Army Environmental Center
Building E4435, Edgewood Area
Aberdeen Proving Ground, MS 21010

Under Contract Ng. DACA38-93-K-0016

Monitore<d by U.S. Army Engineer Waterways Experiment Station
3809 Halls Forry Reoad, Vicksburg, MS 39180-6185

US Army Corps

of Engineers : ()
Waterways Expenment 3 o jmm
Station Rk !

HFEORMATION

PURLIC AFFAIRS OFFICE

U. S ARMY SNGINEER

WATERWAYS EXPEMMENT STATION
3008 HALLS FERAY ROAD
VICKSAURG. MBS 31504100
PHOHE . (601)834-2002

2l

ARRA OF ALIERVATION « 1 1 e lon

Waterways Experiment Station Cataioging-in-Pubiication Data

Ward, William A.

Transition to Ada / by William A, Ward, Jr. ; prepared for U.S. Army
Environmental Center ; monitored by U.S. Army Engineer Waterways
Experiment Station.

104 p. :ill. ; 28 cm. — (Technical report ; ITL-94-8)

Includes bibliographic references.

1. United States. Army. Corps of Engineers. — Automation. 2. Ada
(Computer program language) 3. Government information ~— Automa-
tion. 4. United States. Dept. of Deiense — Automation. |. United States.
Army. Corps of Engineers. ll. U.S. Army Engineer Waterways Experi-
ment Station. 1ll. information Technology Laboratory (US Army Corps of
Engineers, Waterways Experiment Station) IV. U.S. Ammy Environmental
Center. V. Title. VI. Series: Technical! repart (U.S. Army Engineer
Waterways Experiment Station) ; {TL-94-8.

TA7 W34 no.iTL-94-8

~ Aagaeaslon For

IONTIS GRAXE rd

| prie T]
Unirvgae o gad 3
JROL L Lt o0

BY e e e eeearenmd

Digtyihetlang

Availz vl icy O-2ep

Contents S

Dist

-
[N
—

PIEIACE .ot et e b e b e v

1 — EXecutive SUMIMATY ..ottt et s st 1

2 — INtroduCtion £0 AdA .ovvveeieiiircieee et 3

Past Problems ... e s 3

Potential SOIULIONS ..ot b 4

A History of Ada ... e 5

The Superiority of Ada ..o e 8

3 —The Corps Transition 10 Adac..coveeniinverieeiiieinie s s s 11

Scope of the Transitionccooccviiiiiier e e 11

i Compiler SElectionccocieiiiiiiic e e 12
| Personnel Trainingooooivriiiniiiiiieee e e et err s 14
; The Rational EnvIironmentccocecvvevnicciniineinni e 16
! Ada/Oracle INErfacesccoovveiiinininiein et e 19
Code Production Environments ... iiiiinenincconnnnnenrenniens e e 21

i SCreen GENETALOTS .vveveviiiiie ettt sttt ear s 22
Database MANAZETSccccevrrmrinienrinicnceese s e e sretesesaterssress e rassarans 24

Analysis and Design Aids ... 25

Metrics ColleClOrSoouviiiiiiie ettt 26

HOW 10 ProCeed ...ttt et 26

RETEIENCES .oiviiiiiiiiiesiiitieiienc sttt st et et as et 30

Bibliography ... 33

Appendix A: DoD Directive 3d05.1 ... Al

Appendix B: HQDA LTR 25-00-1 ..ottt Bl

Appendix C: The Congressional Ada Mandatecccoooeerviiienicnncninnn, Cl

Appendix D: Ada vs. CH+ s e Dl

Appendix E: Selected Ada Vendors ..o El

Appendix F: Ada-Related Organizations ...t Fl

Appendix G: Ada Events Calendar ... v Gl
Appendix H: Glossary of ACIONYIMSccvcviieeiiiinieiviiiimeieressererneeresssresseressseene H1

Report Documentation PAZE ... evissse sasvss End

Preface

This report is published in the interest of scientific and technical information
exchange; the ideas and findings contained herein should not be construed as an
official position of the U.S. Army Corps of Engineers. Use of any trademarks in
this report is not intended in any way to intringe on the rights of the trademark
holder.

While much work has gone into ihe development of this report, it should be
emphasized that it is introductory, not comprehensive, in nature; doubtless there
are questions related to Ada which have gone unanswered. Nevertheless, after
reading this document managers should be aware of the broad issues associated
with the ransition and of the resources available when further investigation is
necessary.

Much of the information presented here is drawn from a study conducted by
Dr. Orville E. Wheeler, Memphis State University, which specifically addressed
the transition of PC-targeted systems development from a C, C-Scape, dbVista
environment to an environment based on Ada (Wheeler 1992). Ms. Lynn Miku-
lich, Construction Engineering Research Laboratory (CERL), contributed to the
description of the Rational Environment, and Mr. Ralph Kahn, Oracle Corpora-
tion, to the discussion on Ada/Oracle interfaces. Dr. Windell F. Ingram reviewed
this report and made many helpful comments. The author gratefully ack-
nowledges the centributions of all these individuals. Where noted, information
has been drawn from the Ada Information Ciear' ghouse (AdalC).

This repcrt was prepared under the auspices of the Executive Software Sub-
committee established by the Field Information Management User's Group
(FIMUG) of the US Army Corps of Engineers (USACE). FIMUG is a field
advisory body to the Director of Inforniation Management. The Executive
Software Subcommittee was assigned the task of preparing a report giving back-
ground on and discussing issues relevant to the mandated transition to the Ada
programming language. This report completes that task.

The production of this report was sponsored by the U.S. Army Environimenta
Center (AEC) and funded through the U.S. Army Engineer Waterways Experi-
ment Station (WES) Information Technology Laboratory (ITL) under Contract

No. DACW39-93-K-0016 from March 3, 1993 to December 31, 1993,

Mr. Mark N. Bovelsky was Chief of the Information Management Branch,
AEC, and also Chairman of the Executive Software Subcommittee of the
FIMUG during the preparation of this report. The contract was monitored by Dr.
Windell F. Ingram, Chief, Computer Sciences Division, ITL. Dr. N. Radhakrish-
nan was Director, ITL, Dr. Robert W. Whalin was Director of WES, and COL
Bruce K. Howard, EN, was Commander.

1 Executive Summary

This report addresses issues relevant to the transition to the use of Ada froma
Corps of Engineers perspective. The direct discussion of these issues is pre-
ceded by background material on Ada itself. First, the Department of Defense
(DoD) software crisis that led to the development of Ada is described and the
causes underlying it are presented. Potential solutions to the crisis are discussed,
including programmer productivity aids, structured programming, standardiza-
tion efforts, computer-aided software engineering (CASE) tools, and research
centers. Next, a brief history of Ada is presented to show how it fits into the
Government’s approach to meeting the crisis. This includes a description of the
systematic design and review process to which preliminary versions of Ada were
subjected, Zollowed by a discussion of the guidelines which apply to the use of
Ada, including the Congressional mandate to use Ada and the pertinent DoD and
Army regulations.

‘The second major section of this report discusses the Corps transition to Ada.
This transition will involve not only a change in the programming language used
by the Corps, but also a change in development philosophy; software engineer-
ing principles must be incorporated into the development process for the transi-
tion to be successful. The various issues to be addressed by the Corps in order to
accomplish this are then presented. The first of these is the selection of a com-
piler for PC platforms. This issue is discussed using results drawn from a
Corps-sponsored study which reviewed various Ada compilers and development
tools. The importance of formal training for programming staff is stressed. A
four-week sequence of courses is proposed which covers object-oriented design,
Ada coding, and object-oriented analysis. Other aspects of training, including
attendance at technical conferences and acquisition of relevant literature, are
also discussed. Because of their importance to the Corps during the Ada transi-
tion, two special topics are then addressed: the Rational Environment (a state-
of-the-art Ada programming support environment) and use of Ada with the Ora-
cle RDBMS. CASE tools will have to be acquired to support this effort; exam-
ples of such tools, including code production environments, screen generators,
database managers, analysis and design aids, and metrics collectors, are
described to illustrate the range of capabilities available.

Chapter 1 Executive Summary 1

The report concludes with recommendations conceming practical steps Corps
development sites can take to ensure a successful transition to the use of Ada.
The most immediate of these are acquisition of Ada compilers and programming
support environments, initiation of a training sequence, selection of Ada experts
at each site, and making a decision regarding acquisition of the Rational
Environment. An important long-range recommendation would be for the vari-
ous development sites to successfully participate in the Software Engineeting
Institute’s (SEI) Software Process Assessment. As a final note, readers should
view the mandate to use Ada as an opportunity for the Corps to assume a leader-
ship role within the Army in the area of software development. The Corps of
Engineers has a long history of engineering many things well, and there is no
reason why the Corps should not engineer software well, t00.

Chapter 1 Executive Summary

2 Introduction to Ada

Past Problems

| Government activities depend increasingly, if not totally, on information
technology for their successful completion. Because declining appropriations
are forcing reductions in manpower while workloads continue to increase, this

| dependence will accelerate as functional organizations automate more and more
tasks. This will in turn increase the workload of information management (IM)
as they aid these organizations in this automation process. Unfortunately, IM is
not immune from current budgetary pressures; as a result, it must automate its
own software development activities.

This fiscal difficulty, aithough serious enough in and of itself, is not the only
problem faced by software developers. There is another which has plagued IM
for many years and which manifests itself in software systems which are
delivered years late, which are delivered without all of the required capabilities,
or which are not delivered at all. Furthermore, many such systems, even those
which meet their functional specifications, perform at unacceptable levels
because they are designed for and installed on computer systems of insufficient
power. To determine the extent of this problem, the US General Accounting
Office conducted a study of nine software development contracts totaling $6.8
million (U.S. General Accounting Office 1979, p. 11). The results were not
encouraging:

s $3.2 million was spent on software delivered but never successfully used.
e $1.95 million was spent on software paid for but not delivered.

¢ $1.3 million was spent on software used but extensively reworked or later
abandoned.

o $198,000 was spent on software that could be used after changes.

Chapter 2 introduction to Ada 3

e $119,000 was spent on software that could be used as delivered.

Furthermore, the average delay on these contracts was an additional 75 percent
of the original time estimate. Unfortunately, there is little evidence that the
situation has improved since this study was performed.

There are several reasons for this system development crisis. First, many pro-
Jject managers are optimistic when specifying the scope of a project because they
want to solve as many of their IM problems as possible. Second, reaching con-
sensus on autornation needs is time-consuming; the current method involves iso-
lating key personnel at a remote site for one or more months to analyze needs
and produce requirements. This is disruptive to work at the home sites and there
is still ro guarantee that significant changes in these requirements will not be
necessary. Third, contractors have little incentive to limit project scope, because
the more objectives there are, the more money there is to be made. Fourth, even
if Government project managers are realistic in their estimates of what can rea-
sonably be done in a given period of time, they generally do not have the techni-
cal expertise or the time to ascertain if the contractor is following accepted
software development practices, much less using appropriate modern software
engineering methodology. Furthermore, contractor personnel who actually
design and implement the system rarely have sufficient software engineering
experience because software engineering is not viewed as an important part of
the computer science curriculum at many universities (Frakes, Fox, and Nejmeh
1991, p. 3).

Potential Solutions

The computing community has long recognized the need to facilitate the
timely production of large software systems. Many of these have focused on
improving the productivity of individual programmers, including the invention of
assemblers (to replace the use of machine language), compilers for third genera-
tion high-level languages (to replace the use of assemblers), fourth-generation
language processors (to replace use of compilers), full-screen language-specific
editors (to replace use of keypunches and line editors), the use of source code
version control tools such as make and sccs (to reduce the complexity of the
edit-compile-test cycle), and the use of structured programming (to reduce the
complexity of the software itself).

The Government has also initiated a number of efforts to resolve the software
development crisis. Perhaps the most successful of these are the standardization
activities, including the establishment and ongoing revision of the Federal Infor-
mation Processing Standards (FIPS) (NIST 1991) by the National Institute for
Standards and Technology (NIST. formerly the National Bureau of Standards);
these FIPS address issues ranging from hardware data formats to programming
language features. More recent efforts at ctandardization include the required
use of Ada for all new DoD software projects and the establishment of standard
documentation formats (DoD-STD-2167/2167A). Other organizations are also
active in this process, including the Institute for Electrical and Electronic

Chapter 2 Introduction to Ada

Engineers (IEEE}, which has promulgated standards for software engineering
and software quality assurance (IEEE 1983, IEEE 1984, IEEE 1986), as well as
the American National Standards Institute (ANSI), and the International Stan-
dards Organization (ISO), which have produced standards for various program-
ming languages. Finally, there are de facto standards which exist by virtue of
their widespread use; examples include operating systems (DOS, MVS, and
UNIX) v..ndow environments (Microsoft Windows and the X Winaow System),
#ad printer control languages (HPPCL and PostScript).

Unfortunately, use of programmer productivity aids is tactical in nature
because it addresses only the implementation phase of the software life cycle.
The standardization efforts are an example of a more global wpproach, but
enforcing use of such standards by contractors is sometimes difficult for non-
technical personnel, and in any case such efforts do not go far enough toward
addressing the real issues. What is needed is a more strategic aporoach; experts
in both the academic and commercial worlds Lave recognized t* s and a number
of possible approaches have been proposed, including groupware (GW),
computer-aided software engineering (CASE) tools, object-oriented design
(OOD), object-oriented programming (OOP), and rapid prototyping.

DoD has recognized the potential of such methods and has established
several centers to encourage further software engineering research and to
transfer this technology to DoD projects. These centers include the SFI at
Carnegie-Mellon University in Pittsburgh, the US Army Software Engineering
Directorate at Fort Monmouth, the US Army Institute for Research in Manage-
ment Information, Communications, and Computer Science (AIRMICS) at the
Georgia Institute of Technology, and the US Air Force Software Technology
Support Center (STSC) at Hill Air Force Base. Other DoD programs that address
software engineering issues include the Software Technology for Adaptable,
Reliable Systems (STARS) Joint Program Office, partially sponsored by the
Defense Advanced Researched Projects Agency (DARPA), and the Data and
Analysis Center for Software, which provides the DoD with data, information,
products, and services 1n order to facilitate technology transition.

A History of Ada

Why has Ada been selected by DoD as the required high-order language?
How does it fit into the solution approach described above? To answer these
questions, some background on the history of Ada is required. A study per-
formed during 1973 and 1974 revealed that the Department of Defense was
spending $3 biliion per year on software, that this cost was steadily rising, and
that most of the cost was consumed not by development of new systems, but by
maintenance of old systems. The reasons for this were apparent; DoD software
projects were so speciaiized that the contractor who originally developed the
system was aimost invariably the only one who could maintain it, thus limiting
competitiveness and eliminating any incentive to cut costs (Cohen 1986, p. 2).

Chapter 2 Introduction to Ada 5

A second problem was the use of obsolete programming languages. Because
these languages were developed in the 1960s, they do not provide features to
support modern software development concepts, particularly top-down design,
structured programming, daia abstraction, module reuse, and program validation.
Furthermore, they do not allow interface checking between separately compiled
program modules, and assembly language must often be used for device-level
/O to compensate for the language’s deficiencies in that area (Cohen 1986, p. 2).

This situation was further aggravated by frequent contractor use of project-
specific programming languages or platform-specific versions of *‘standard”’
languages. This discouraged development of software tools because their one-
time use could not justify the initial cost of their production. Even when some
simple tools, such as compilers, linkers, editors, and configuration managers,
were developed, they were typically not used on multiple projects (Cohen 1986,
p.2).

The findings of the 1973-1974 study led to the establishment of the High
Order Language Working Group (HOLWG), which was charged with identifying
a standard language for use throughout DoD, particularly for embedded systems.
The HOLWG included members from the Office of the Secretary of Defense, all
three branches of the military, the DARPA, the Defense Communications
Agency, and the National Security Agency. The initial requirements for this
language, tentatively named DoD-1, were released in April 1975 and circulated
within the Government and to selected outside experts in the field of program-
ming languages. This requirements document, termed **Strawman,”” was subse-
quently revised to produce ‘‘Woodenman’’ in August 1975 and ‘‘Tinman'’ in
January 1976; each revision incorporated recommendations provided by
reviewers from government, industry, and academia. After further study, the
HOLWG announced in January 1977 that no existing language satisfied the Tin-
man requirements. The Tinman requirements were rewritten in the form of an
actual language specification, dubbed ‘‘Ironman,”” and an RFP for a language
design was released in April 1977. Following an incremental review spanning
two years in which the number of designs was narrowed from seventeen to four
to two, the design proposed by CII-Honeywell Bull was accepted. The formal
lariguage specification was ultimately published in 1983 as ANSI/MIL-STD-
1815A-1983. and as a FIPS (NIST 1985).

Since the standardization of the Ada language specification in 1983, DoD has
steadily moved towards adopting Ada as the standard language for systems
development. Initially, requirements for the use of Ada applied only to embed-
ded weapons systems. Even then, it was sometimes possible to obtain waivers to
these requirements. However, concemns about runaway software development
costs, coupled with the recognition that use of Ada throughout DoD would resuit
in major cost savings, prompted more stringent regulations. On 2 April 1987,
DoD issued Directive 3405.1 which stated,

The Ada programming language shall be the single, common, com-
puter programming language for Defense computer resources used
in intelligence systems, for the command and control of military

Chapter 2 Introduction to Ada

forces, or as an integral pant of a weapons system. Programming
languages other than Ada that were authorized and being used .
full-scale development may continue to be used through deploy-
ment and for software maintenance, but not for major software
upgrades. Ada shall be used for all other applications, except when
the use of another approved higher order language is more cost-
effective over the application’s life-cycle, in keeping with the
long-range goal of establishing Ada as the primary DoD higher
order language (HOL) (U.S. Department of Defense 1987).

In this context, a major software upgrade is defined to be *‘redesign or addition
of more than one-third of the software.”” "s he complete text of this divective is
given in Appendix A.

HQDA emphasized the Army’s adherence to this policy in LTR 25-90-1,
issued on 16 July 1990, which specifically addressed *‘Implementation of the
Ada Programming Language.”” This letter stated,

The Ada programming language as defined in ANSY/MIL-STD-
1815A-1983 is the single, common, high order computer program-
ming language for all computer resources used in the Army unless
another language is mandated by a higher level directive. Existing
software need not be rewritten in Ada solely for the purpose of
converting to Ada. All systems, however, will transition to Ada
when the next hardware/software upgrade requires modification of
more than one-third of the existing code over the system life cycle,
unless a waiver is obtained (U.S. Department of the Army 1990).

Waivers are not necessary for use of (1) off-the-shelf software requiring no
Government maintenance or modification, (2) SQL as an interface to a DBMS,
(3) non-SQL-compliant 4GLs to produce prototypes or systems with a useful life
of less than 3 years, and (4) machine or assembly language in performance criti-
cal situations when the ratio of non-Ada to Ada source code does not exceed
15% and the non-Ada code is not more than 10,000 lines. All other situations
require waivers. Requests for waivers must be accompanied by a thorough cost
and technical analysis which clearly demonstrates the cost effectiveness of the
proposed language. The complete text of this letter is given in Appendix B.

Finally, on 5 November 1990, the President signed the FY 1991 DoD
appropriations bill (Public Law 101-511) Section 8092 of this law, popularly
known as the ‘‘Ada Mandate,’* states,

Notwithstanding any other provisions of law, after June 1, 1991,
where cost effective, all Department of Defense software shall be
written in the programming language Ada, in the absence of special
exemption by an official designated by the Secretary of Defense.”’
(U.S. Congress 1990)

Chapter 2 Introduction to Ada

Supporting information on this law 1« given in Appendsx C

The Superiority of Ada

Regponses to these policy statements from the software development com-
munity have often been quite skeptical, and many still question Ada’s purported
cost benefits. From a scientific perspective, one of the strongest challenges has
come from adherents of object-oriented design (OOD) and object-oniented pro-
gramming (OOP). This relatively recent technology emphasizes the correspon-
dence between objects and operations in the real world and data types and opera-
tions in a software system. It promises order-of-magnitude inprovements in
software development productivity. Although object-onented principles and
methodologies are generally language independent, several languages have been
designed to provide objeci-onented features. Smalltalk, at the same time a pro-
granmuming environment and a programming language, is preeminent in this
respect. It claims to be a pure object-oriented language, but it typically makes
heavier demands on sysiem resources than general-purpose procedural
languages, and few large software systems have been implemented in it. How-
ever, these particular criticisms are not valid for Ada's strongest challenger,
C++. This language was designed to directly support object-oriented techniques
and at the same time be completely upward compatible with C. In an attempt to
obtain a waiver to the use of Ada, the Air Force conducted a study to determine
the relative cost effectiveness of Ada and C++ (U.S. Department of the Air Force
1991). (An overview of the Air Force report is given in Appendix D.) Surpris-
ingly, the study determined the opposite of what many anticipated; Ada, not
C++, was found to be superior.

This study consisted of four substudies which compared the two languages
from various perspectives. The first substudy, performed by the Institute for
Defense Analyses (IDA), addressed tools, environments, and training. Their
report concluded that there are more US vendors of Ada compilers than C++
compilers (28 vs. 18), that Ada compilers are subjected to a relatively rigorous
validation process whereas C++ compilers cannot be validated because no C++
standard even exists, that Ada has cross-compilation systems and code genera-
tors while C++ does not, and that 223 universities and 13 DoD installations teach
Ada compared to 4 and 0, respectively, for C++. The second substudy was con-
ducted by the SEI and included a quantitative comparison of the two languages
based on six categories: capability, efficiency, availability/reliability,
maintainability/extensibility, life cycle cost, and risk. Ada was clearly superior
by a score of 78.8 to 63.9 (on a 100-point scale). The third substudy, completed
by CTA, concluded, ‘‘Ada projects have reported 15% higher productivity with
increased quality and double the average size. Normalizing these data to com-
parable size projects would result in an expected Ada productivity advantage of
about 35%."" Specifically, their data indicated that C++ suffered from error rates
three times greater than Ada (as measured at the software formal qualification
test). The final study, performed by TRW, established 18 criteria to judge the
life cycle cost effectiveness of the two languages. A panel of experts was then
used to establish the scores and weights for each of these criteria; the score for

Chapter 2 Introduction to Ada

Ada was 23% higher for MIS systerns and 24% higher for ¢’ systems. The
study’s overail conclusions are given below.

All four substudies whicl. specifically compared Ada and C++
(IDA. SEI, CTA, TRW report a significant near term Ada advan-
tage over C++ for ali categories of systems. This advantage could
be eroded as C++ and its supporting environments mature cver the
next few years. On the other hand, as aggressive overseas Ada ‘ni-
tiatives stimulate even wider domestic Ada interest, as Ada
tools/environments further mature, and when the Ada update (Ada
9X) is complete, the balance could tip further in Ada's favor.

Adding to the case for Ada is that the Ada scoring so well herein is
Ada’s 1983 version, MIL-STD-1815A. Just as C++ incorporates
into C certain software engineering concepts aiready in Ada (e.g.,
modularity, strong typing, specification of interfaces), so an Ada
update now underway will bring into Ada selected features now
included in C++. This update, known as the Ada 9X Project, is tar-
geted for completion in 1993 (Ada 9X Project Office 1991). The
product of extensive community involvement (including the C* and
MIS communities), Ada 9X will bring to Ada such improvements
as decimal arithmetic, international character sets, improved
input/output, support for calls between Ada and other languages,
further representation specifications, and
inheritance/polymorphism (popular features of C++). At the same
time, Ada 9X has been designed so that neither existing Ada
benefits nor performance will be lost. For example, Ada 9X inheri-
tance will be controlled so as not to reduce life cycle supportabil-
ity.

In summary, Ada is the most cost effective programming language
for DoD applications. Specifically, it is not possible to make a
credible case for the existence of classes of ‘‘more cost effective’”
C++ systems compared to Ada. Business cost effectiveness data
collected for this study are typified by the TRW conclusion that
Ada provides development cost advantages on the order of 35%
and maintenance cost advantages on the order of 70%. In terms of
future life cycle costs, it will be some time before data exists which
could justify a cost savings for C++. Today, there is iimited life
cycle data available for Ada and almost none for C++.

For the foreseeable future, then, there are more than enough rea-
sons for the DoD to stick firmly with Ada for all high order
language (3GL and 3-1/2 GL) development and for exclusive use
as a target language of 4GL application generators in the large
class of applications for which 3GL code must supplement gen-
erated code (U.S. Department of the Air Force 1991).

Chapter 2 introduction to Ada e]

10

These conclusions carry particular weight for the Corps when one notes that
the study focused on information and c? systems (not embedded weapons sys-
tems), and that those who initiated the study were biased toward C++ and against
Ada.

Chapter 2 Introduction to Ada

3 The Corps Transition to Ada

Scope of the Transition

Without the Ada mandate, the Corps would have three alternatives in the area
of programming language selection: to stay with whatever is currently in use, to
adopt a more modem language other than Ada, or to adopt Ada. The first
approach has been tried for over a quarter century and has proven ineffective.
The most promising choice for the second alternative, C++, is still immature,
lacking a standard and associated development tools. Ada, the third choice, has
proven its effectiveness in numerous large projects, has a standard which has
been in place almost ten years and which is rigorously monitored, and has a wide
variety of tools which are available to assist programmers and analysts. Even if
the Government had not required the transition to Ada, there would still be many
compelling reasons to do so, and no compelling reasons not tc do so. Pursuing
this third choice will, however, have a price. The immediate costs will be asso-
ciated with the purchase of Ada compilers and the training of programmers.
Leamning the Ada language will be relatively straightforward for those develop-
ers who are already experienced with Pascal and, to a lesser extent, C. Those
who have programmed exclusively in FORTRAN or Cobol will typically require
a longer training period.

However, if the transition to Ada involved only a change in programming
language, it would indeed be relatively painless. Unfortunately, this is not the
case. Additionally, to maximize the benefits of the change, recognized software
engineering principles must be incorporated throughout the software life cycle.
More specifically, the underlying methodology used by project leaders to design
large software systems must be changed; the leading contender for this metho-
dology is the object-oriented approach already mentioned. Secondly, computer-
aided software engineering (CASE) tools must be acquired to automate the
development process; these range from language-sensitive editors which help
minimize syntax errors to high-level design tools which facilitate application of
an object-oriented methodology. Finally, application programmers and analysts
must be equipped with a deveiopment platform which has greater functionality
than the curre it DOS-based environment. The memory limitations inherent in

Chapter 3 The Corps Transition {o Ada 11

DOS, the absence of protected mode execution, its lack of virtual memory, its
inability to support multiple users, the absence of true multitasking (even with
Windows), and its inability to support multiple users are deficiencies which limit
the productivity of applications developers. That Microsoft recognizes these
shortcomings is evidenced by their soon-to-be-released NT operating system.
Other candidates include IBM’s 0S/2, and of course, the more mature and
nonproprietary UNIX operating system. However, these three additional issues
would need to be resolved regardless of the language selected; furthermore, they
must be resolved to make optimum use of Ada in the development of large
software systems.

Compiler Selection

Many computer manufacturers provide compilers for their own systems while
other software companies have produced cross compilers primarily for embed-
ded systems. From the Corps’ perspective, however, there are currently three
major independent Ada compiler vendors: Alsys, Telesoft, and Verdix. Of these
three, Alsys is probably the vendor of choice for the Corps’ Control Data (CD)
and PC platforms, although the Verdix VADS environment is probably better for
RISC workstations (SRA 1992). Alsys offers compilers for a broad range of
hardware platforms, including IBM-compatible PCs running DOS and UNIX,
various Motorola 68000-based computers (Apple Macintoshes, Apollo Domain
workstations, HP 9000/300s, and Sun-3s), most RISC-based workstations and
servers (DECstations, IBM RS/6000s, MIPS, and Sun SPARC), DEC VAX/VMS
workstations and minicomputers, and IBM 370 series mainframes. The plat-
forms of particular interest to the Corps are 86X86 running DOS, to be discussed
below, and the Control Data 4000 series. Control Data has licensed the Alsys
Ada compiler for MIPS-based sysiems and has placed it on the Corps of
Engineers Automation Plan (CEAP) contract. This product consists of a compi-
lation system, which includes the Ada compiler, global optimizer, linker, library
manager, run-time executive, standard Ada packages, and an ISO-compliant
math library, as well as a tool set, which includes a source-level symbolic
debugger, recompiler to automate the system rebuilds, cross reference generator,
source code reformatter with user-controllable options to enforce particular cod-
ing standards, syntax checker, source generator to produce source code from
compilation units, name expander to convert identifiers visible through use
clauses into fully qualified names, and profiler to determine where execution
time is spent. Pertinent contract information is given in Table 1.

Many Corps programmers will initially use 80X86/DOS platforms for their
development work. Although there are over 270 validated Ada compilers avail-
able today, only three run under MS-DOS: FirstAda from Alsys, OpenAda from
Meridian Software Systems (recently purchased by Verdix), and Janus/Ada from
R&R Software. As part of a Corps-sponsored study (Wheeler 1992), these three
compilers were compared using cost, documentation, adherence to standard,
resources required, support environment availability, vendor history and future,
upward migration, and performance as evaluation criteria. The evaluations were
based on published reports in trade journals, personal communication with

12 Chapter 3 The Corps Transition to Ada

Table 1
Ada Compilers on the CEAP Contract

CEAP Contract initial Monthly
Computer | Line item License Maint.
System Number Cost Charge
CD 4330 10757J $15,000 $250
CD 4680 1075TK $20,000 $335

vendor representatives, documentation supplied with each product, actual bench-
marks performed for this study, as well as personal experience with each of the
compilers. Each of the three compilers was assigned a score from 1 to 10 for
each criterion and weights indicating the relative importance of each criterion
were then used to produce a weighted average. A complete description of the
evaluation, including rationale for the scores presented here, is provided in the
study’s final report (Wheeler 1992). The results displayed in the Table 2 indicate
the superiority of Alsys FirstAda (A) over its Meridiar (M) and R&R (R) com-
petitors. Its documentation and performance were clearly better than the other
two while recent price reductions from Alsys make cost differences negligibie
(Alsys’ volume price is $973.50 each, including media, documentation, and one
year of maintenance).

Table 2
PC Ada Compiller Comparison?

Raw Scores Weighted Scores
Evaluation Weight
Criteria A M R Factor A M R
Cost 8 9 9 5 40 45 45
Documentation 9 6 2 10 90 60 20
Standard g 8 6 8 72 64 48
Resources 6 8 9 2 12 16 18
Environment 8 6 7 8 64 48 56
Vendor 9 7 7 7 63 49 49
Migration 9 6 3 5 45 30 15
Performance 9 6 2 10 90 60 20
Aggregate 476 372 271
Percant 86.5 67.6 49.3
1 From (Whesler 1992)

As a final comparison, the well-known Whetstone benchmark (Curnow and
Wichman 1976) was used to compare the performance of Alsys FirstAda, Micro-
soft FORTRAN, Borland C, and Borland Turbo Pascal. The tests were per-
formed on a 16 MHz Zenith 386. Using a full math library with run-time check-
ing disabled, the results, as measured in thousands of Whetstone instructions per
second, were 767, 650, 572, and 111. Although this comparison is obviously not
exhaustive, it does indicate that Ada compilers, at least as exemplified by Firs-
tAda, are competitive with other available language compilers. Again, further
information on this benchmark may be found in the WES report. (Wheeler 1992)

Chapter 3 The Corps Transition to Ada 13

Personnel Training

As noted earlier, because a successful transition to Ada will involve more
than just changing compilers, so will training programmers to use Ada involve
more than teaching Ada syntax and semantics. The required changes in thinking
and working patterns cannot be induced in software developers without formal
training. This approach will emphasize to the students the importance manage-
ment attaches to the Ada transition, much more so than if they are handed a book
and told to pick up the technology on their own. This training should develop in
personnel a new perspective on the design of large software systems and
encourage the incorporation of modern software engineering practices into their
development projects. Based on successful experience at CERL, THAMA, and
WES, it is recommended that this training include an overview of the software
development crisis and the history of Ada (two days), object-oriented design
with Ada (one week), coding programs in Ada (two weeks), and object-oriented
requirements analysis (one week). Modemn software engineering principles
should be incorporated into every course. No more than twenty students should
be in any class and only personnel having prior experience with another pro-
cedural programming language should attend. At least one or two weeks should
elapse between courses to prevent students from becoming overwhelmed with
new information. Managers should attend the design and analysis courses if at
all possible. System development work in Ada should follow soon after the
course work to provide immediate positive reinforcement of the concepts learned
during the training. When a large project is envisioned which involves develop-
ment teams at different sites simultaneously making the transition to Ada, a com-
mon training program is advised to provide a ccmmon technical vocabulary,
design methodology, and development philosophy.

The purpose of the initial two-day overview session should be to motivate the
development staff for participation in the remaining courses. This introduction
should cover the DoD software development crisis and the various attempts
within the software engineering community to address it. The history of Ada
should be given to present the language as an essential part of the solution to this
problem. Ada should be compared to other programming languages, noting its
similarities, its unique capabilities, and the rigorous standardization process to
which Ada compilers are subjected. Software engineering should be introduced
not as the application of an array of CASE tools, but as the application of good
~Agineering management principles to the development of software, i.e., under-
standing the problem, planning the solution, constructing the design, executing
the design, and communicating the solution. The need to change from ‘*hand
crafted’’ software to ‘‘engineered’’ software should be stressed, and the

i improvements in understandability, reliability, maintainability, and efficiency
which will result from this change should be noted. Object-oriented techniques
should be introduced as a tool to effect this transition. Case studies should be
provided to illustrate the successful use of Ada in the development of large
software systems. Students should be impressed with the notion that Ada’s
overall design and many of its specific features were intended to support
software engineering principles and that the transition to Ada should be viewed
as a commitment to adopt those principles.

14 Chapter 3 The Corps Transition to Ada

g
4
£
Fir
i

The remaining courses are intended to provide the necessary knowledge
about the language, software engineering, ubject technology, and the develop-
ment cnvironment to allow programmers to begin using Ada. The object-
oriented design (OOD) course should cover the following topics: motivation for
using object classes to model the problem space; comparison of functional and
object class problem decomposition; introduction to object-oriented design
methodology; material necessary to introduce the notion of separate compilation,
including Ada program units, program structure, and the Ada program library,
the black-box principle for information hiding and data abstraction, including
encapsulation, packages, and private types; various Ada types, including integer,
floating point, enumeration, record, array, and access types; generics and
predefined units. Case studies should be provided to illustrate the design process
and how to critique a design. Exercises should be assigned to provide experi-
ence in the use of Ada as a program design language (Texel 1992 Object-
Oriented Design with Ada). The Ada coding course should cover the following
topics: overview of the syntax of various Ada statements; Ada identifiers; sub-
programs, input/output, and exceptions; more in-depth coverage of Ada types
than was provided in the previous course including when to use distinct types,
subtypes, and predefined types; Ade control structures: loops, if statements, case
statements; additional information on generics; tasking. Class time should be
about half lecture and half hands-on work on coding exercises (Texel 1992 Ada
Coding). The object-oriented requirements analysis (OORA) course should
cover the following topics: introduction to OORA: comparison with other
requirements analysis techniques; role of object classes, attributes, and relation-
ships in OORA; use of state and process models; transition to the design stage.
Practical application issues should be addressed through case studies and exten-
sive exercises (Texel 1992 Object-Oriented Requirements Analysis). The fol-
lowing topics from software engineering should also be covered at some point in
the course sequence: aims of software engineering; models of software develop-
ment; requirements definition and evolution; design processes and strategies;
software components and reusability; programming for reliability, including
exception handling and defensive programming; software testing; programmer
productivity, quality control, and software metrics.

After these courses are completed, steps should be taken to maintain staff
expenise, Programmers should be encouraged to obtain membership in the
ACM, ACM SIGAda, and the IEEE Computer Society. If possible, the organiza-
tion should subscribe to relevant publications from these organizations, as well
as any others which may be helpful. A recommended list would include Ada
Letters, CrossTalk, Communications of the ACM, and IEEE Cc...puter. If possi-
ble, ACM Computing Surveys, ACM Transactions on Information Systems, ACM
Transactions on Software Engineering and Methodology, IEEE Software, IEEE
Transactions on Sofiware Engineering, and Software: Practice and Experience
should be added as well. This library should also include texts and conference
proceedings covering Ada, object-oriented technology, and software engineer-
ing; the bibliography at the end of this report should serve as a starting point for
this effort.

Chapter 3 The Corps Transition to Ada 18

A few individuals should be selected to become the organization’s Ada
experis. They should be the recipients of further training on a regular basis, stay
aware of the activities of the Ada Joint Program Office, and should also attend
selected conferences and seminars, e.g., the TRI-Ada Symposium, the Washing-
ton Ada Symposium, and the Software Technology Conference. Refer to Appen-
dix G: Ada Events Calendar for a more complete list of such events. Further-
more, they should become familiar with Ada related resources available over the
Intermet, such as those at the SEI, the Software Technology Support Center, and
the SIMTEL20 database; these include technical reports as well as repositories
of potentially reusable Ada software components. The catalog by Nyberg
(Nyberg 1991) will be of particular assistance in this respect. In addition to their
regularly assigned duties, these individuals would be responsible for keeping
abreast of advances in Ada development and software engineering practice, act-
ing as consultants for the rest of the development staff, providing introductory
assistance to new employees, and teaching short courses as necessary.

The Rational Environment

Every software system is implemented in three environments, the decision
environment, the design environment, and the coding environment. The decision
environment is that in which the system’s requirements are specified; here deci-
sions are made regarding how much of a process should be automated, what
inputs must be supplied to the system, how those inputs are to be obtained, what
outputs the system will produce, how those outputs are to be presented, and how
users will interact with the system. Generally, input into this decision-making
process is provided by functional managers and, occasionally, by prospective
end-users and system developers. The output from the decision environment
provides strategic guidance to the developers of the system. The subsystems are
assigned to development teams who may actually be independent contractors.
These teams are responsible for taking the broad guidciines supplied to them and
incrementally refining the design until an actual working system is obtained.
The organizational and computational context in which this is done is termed the
development environment; it is broken into two subenvironments, the design
environment and the coding environment. In the former, technical managers
make decisions regarding breakdown of subsystems into packages and modules,
and the information flow between them, while in the latter, programmers
translate the design into actual program text, which is then compiled, debugged,
and tested.

There are numerous potential problems in this process. Because the magni-
tude of these problems is so large and because they are so widespread, each is
worthy of, and is being addressed by, research devoted to that particular field. In
each case experts are attempting to apply increased levels of automation to bring
this software development crisis under control; within the first environment, the
current approach involves the use of the IDEF methodology (D. Appleton Com-
pany 1992) for business process modeling and computer-supported collaborative
work (CSCW) techniques such as electronic meeting systems (Johaasen 1988)
for reaching group consensus; within the second, CASE tools, such as code

16 Chapter 3 The Corps Transition to Ada

generators, are proposed; within the third, programmer productivity enhance-
ments, such as language sensitive editors, have been applied.

However, even if satisfactory solutions are found to the problems within all
of these environments, the maximum benefit will not be obtained unless the three
environments are integrated. The issue to be resolved is one of communication,
each environment involves a different group of people, each depending on feed-
back from the others to accomplish their objectives. Seamless interfaces
between these environments must be developed to facilitate smooth transfer of
knowledge and specifications. THAMA is currently spensoring research at WES
to remedy this situation. This work involves development of prototype inter-
faces between existing solutions (IDEF, CSCW, and CASE) to make progress in
a timely manner. At the same time preliminary investigations are under way to
explore the feasibility of a single environment-spanning software system to pro-
vide such an integrated environment.

The system which holds the most promise for progress in this area is the
Rational Environment™, which currently addresses the coding environment
only. Site visits to Rational user sites indicate that it is far superior to all other
currently available systems for implementing large software systems in Ada.
Because the Rational provides a programmable interface which will allow
design tools to communicate with it, it is hoped that it will be possible to extend
its area of applicability to the first two environments. Because it is so effective
in enhancing programmer productivity, it is worth elaborating on its capabilities.

The Rational Environment (or simply, ‘ ‘the Rational’’) is an integrated,
interactive software engineering environment for development, testing, mainte-
nance, and control of large Ada projects. It replaces the usual collection of edit,
make, and version control utilities with a completely integrated system for pro-
gram development. For performance reasons, the compute intensive portion of
this environment executes on Rational's own proprietary hardware, the R1000
processor. This environment server is accessed over an Ethernet through a
software interface available on Sun SPARC and IBM RS/6000 workstations run-
ning the X Window System, as well as PCs running Microsoft Windows. One
such R1000 processor will support anywhere from five to fifteen developers,
depenrding on the mix of editing and compilation. An influx of large compilation
jobs degrades the system's performance, but the intelligence built into the system
reduces the likelihood of such a situation.

Use of the Rational on a large project begins with use of the Rational Design
Facility (RDF). It supports the requirements analysis and design phases of the
software life cycle. Ada is used in this context as a program design language
(PDL) for requirements capture, software design, and MIL-STD-2167A compli-
ant document generation. The RDF also supports integration with third-party
CASE and desk top publishing software packages, including Cadre Teamwork™
and Interleaf TPS™.

During the code development phase, the Rational provides an intuitive
window-based interface which allows users to browse Ada systems according to

Chapter 3 The Corps Transition to Ada 17

|

18

syntactic structure or semantic dependencies. After identifying the portion of the
code which is of interest, programmers use Rational’s Configuration Manage-
ment and Version Control (CMVC) feature to check out individual procedures or
entire packages for development or medification. This allows one prograrnmer
exclusive access to some portion of the software and thus prevents developers
from ‘‘stepping on one another’s toes.”’ Rational’s Ada-sensitive editor is then
used to enter program statements. Ada packages, procedures, functions, loops,
and other program structures are automatically closed with the appropriate end
statements, thus minimizing the possibility of syntax errors. This editor also
allows customization and enforcement of site-specific coding standards.

Periodically, the current version of the program must be tested. Ada is a
strongly typed language, and it checks subprogram calls with subprogram
definitions to insure argument compatibility. Furthermore, compilation units
(e.g., subprograms and packages) may import other packages in order to use their
type and variable declarations, and such imported references must match the ori-
ginal declarations. These relationships between compilation units are called
dependencies and a compilation unit which accesses or uses the resources of
another is said to be dependent on that unit. Obviously, the dependent unit must
be compiled after the unit on which it depends. InJarge Ada sostware systems it
is common for what seems to be a minor modification to require recompilation of
many units because of the chain of dependencies. If such systems are
sufficiently large, the time required for recompilation becomes the bottleneck in
the development process. The Rational Environment avoids this problem
through intelligent dependency checking and incremental compilation. The
former feature allows the Rational to avoid recompilation of dependent units if a
modification has no impact (e.g., a comment was added or changed). After this
impact analysis, only those statements which are dependent are recompiled.
(This statement by staternent compilation is possible because Ada programs are
stored using the Descriptive Intermediate Attributed Notation for Ada (DIANA)
(Goos et al. 1983). Ada objects (e.g., statements) are implemented as DIANA
structures that represent syntactic structure and include semantic information and
executable code. This is much different from the conventional approach of
source code, object code, and execuable images that are stored i separate files.)

When a version of the software is required for the actual target platform,
Rational’s Target Build Facility allows convenient transfer of source code to and
compilation on a particular host. This process is facilitated by the Rational
Compilation Integrator, which permits any third-party Ada compiler to be
integrated with and managed by the Rational Environment. This tool allows
developers to build software for multiple platforms (mainframe, minicomputer,
workstation, personal computer) at the same time. With the Compilation
Integrator, only those portions of the program (individual unit, unit closure, sub-
system, or, if required, entire system) are (re)compiled. Obviously this is more
efficient than compiling tie entire system prior to every test.

Periodically, project managers and team leaders require information about the

structure and status of the system under development. Rational Insight™ per-
forms this function by gathering information about Ada units and subsystems

Chapter 3 The Corps Transition to Ada

I

from the integrated information repository and then displaying it in a graphica!
fashion. The resulting diagrams show dependencies among the various prograin
structures and aid in understanding the relationships among the software com-
ponents. During system reengineering, this is an invaluable capability.

The SEI performed an evaluation of the Rational Environment for DoD
(Feiler, Dart, and Downey 1988). This study assessed its functionality in the
areas of system installation, system administration, detailed design and coding
functions, testing and debugging, compiler quality, configuration management
and project management functions. The results of this study were very positive.
THAMA, WES, and CERL have jointly conducted their own evaluation of the
Rational Environment, visiting Rational's Washington office for two technical
briefings and interviewing Rational users at four sites in northern Virginia.
Impressions from these visits were very favorable. Users who have conducted
their own studies have emphasized that no other development environment
approaches the Rational in functionality. These users have particularly high
praise for Rational’s customer assistance, stressing Rational’s commitment to the
success of the customer’s project. There are, however, a few disadvantages to
use of the Ratiorai. itis quite expensive; an entry level system, including
hardware and software, costs about $250,000. Fu.icunore. a significant amount
of training is required to take full advantage of this sophisticated environment’s
capabilities. In spite of this required investment in hardware, software, and per-
sonnel, the Rational Environment is capable of increasing productivity, lowering
labor costs, and adjusting to changes in requirements or target platforms. For thz
foreseeable future, it appears to be the best way to effectively develop large sys-
tems in Ada.

Ada/Oracle Interfaces

The Congressional mandate to use Ada has posed some significant technicai
problems for those involved in MIS system development. Most MIS systems
must utilize commiercially available graphical user iaterface< (GUIs) and/or rela-
tional database management systems (RDBMSs); unfortuna.ely, the interfaces
between Ada and these packages have traditionally been rather poor. This prob-
lem is compounded by the lack of a single standard in each of these areas. For
example, a program written for the MOTIF GUI is not portable to the Open Look
GUI, much less to Microsoft Windows, and an application which accesses the
Xdb RDBMS generally requires modification in order to run with the Oracle
RDBMS. The NIST has recognized these problems and responded with an
RDBMS standard, FIPSPUB 127-1 (NIST 1990 February), and a GUI standard,
FIPSPUB 158 (NIST 1990 May). Adherence to these standards by both software
venders and developers will make development of portable applications in Ada
much easier.

The reaction of many software DBMS vendors, including Oracle, to the adop-
tion of Ada and the development of standards has been to provide bindings
between Ada and their products. There are currently four ways to construct an
Ada/RDBMS interface: (1) proprietary application programmer interface, (2)

Chaptar 3 Tha Corps Transition to Ada

FIPS 127-1 compliant embedded SQL precompiler, (3) FIPS 127-1 compliant
module language compiler, and (4) SQL-Ada Module Description Language
(SAMeDL) compiler. Because the first method is neither standard nor portable,
it does not satisfy the Government’s needs. The last technique is based on
research at Carnegie Mellon University. Itis still in an embryonic stage with no
applicable standards and no available commercial implementations. Neither of
these techniques will be discussed here.

The second method is currently the most widely used method of binding Ada
programs to SQL-based RDBMSs. From a technical perspective, such a FIPS-
compliant Ada/SQL binding is merely a way of allowing SQL statements to be
embedded in an Ada program so that the program may exchange information
with a FIPS-compliant RDBMS. Prior to actual compilation, such a program is
first processed by a precompiler which translates the SQL statements into Ada
statements. Oracle’s implementation of this method, Pro*Ada, was introduced in
1989 and has been sold to over 300 sites around the world. It is available on a
variety of platforms, including the Corps’ Control Data CEAP systems as well as
other major UNIX platforms (e.g., HP, IBM, SCO, and Sun). Furthermore,
Pro*Ada has the distinction of being the first Ada/SQL embedded SQL binding
to pass the NIST test for ANSI compliance. It has since passed that test on many
different platforms, both UNIX and non-UNIX. Although the use of Pro*Ada
adds an additional step to the process of program testing, it actually improves
programmer productivity and system performance. Moreover, it alicws dynamic
construction of SQL statements at runtime. The nature of these benefits will be
discussed in the following paragraph.

Improved programmer productivity is a result of Pro*Ada’s extensive syntac-
tic and semantic checking. All SQL statements are validated during precompila-
tion so that errors may be detected and corrected before the potentially time con-
suming compilation and binding of the Ada program. During the semantic
checking phase, Pro* Ada queries the database to first determine if the table used
in the SQL statement actually exists, and then to see if the table has a column
whose name matches the on.. mentioned in the statement. These features save
developers from performing many useless compilations. Increased system per-
formance results from use of Pro*Ada’s array interface (an extension to the FIPS
standard). Use of this interface allows insertion or retrieval of batches of records
with a single database call. For example, an EXEC SQL FETCH may fetch up to
32K records; this can reduce network traffic because one fetch of 32K records
requires fewer packets than 32K fetches of single records. Finally, Pro*Ada
allows dynamic construction of SQL statements at execution tirne. This power-
ful capability allows construction of an SQL statement within a program variable
and submission of the statement to the RDBMS while the program is running (a
feature similar i spirit to FORTRAN's object-time FORMAT).

The third method is the newest approved standard for binding Ada programs :
to SQL-based RDBMSs; it differs from the previous approach in that the Ada |
program and the SQL procedures (modules) are stored in separate files. The
SQL file is translated by the SQL*Module compiler into Ada, then compiled, and
placed in an Ada library. The Ada program is then also compiled and external

20 Chapter 3 The Corps Transition to Ada

references to the SQL modules are satisfied from this library. Oracle’s imple-
mentation of this technique, SQL*Module, was announced in June 1992 and
should be available in the first half of 1993. Prior to its release it will meet the
NIST test for FIPS-compliant module language compilers.

The first benefit of using this third technique is the clean separation of Ada
and SQL, thus improving maintainability and allowing developers to specialize
in Ada or SQL without having to learn both. It also allows developers to use
Ada-specific tools and SQL-specific tools where they are appropriate. Addi-
tional productivity is obtained through the use of stored procedures. Developers
may store their SQL*Module procedures in a database and access them from an
Ada program, thus promoting module reuse.

Finally, another technique for improving productivity is the use of fourth gen-
eration lunguages (4GLs). This involves specification of an application in a
high-level design language (the 4GL), and then transiation of this program to
Ada. Many such code generators are available; however, the vast majority of
them generate package specifications, type declarations, and procedure calls, but
then provide only procedure stubs. An exception to this is the Oracle product
GenerAda, a prototype of which was recently demonstrated at TRI-Ada *92. It
creates a complete application in Ada which is compilable and executable.

Early in 1993, WES will be working with Oracle, under the sponsorship of
THAMA, to test and evaluate this produ:t using a real application.

Code Production Environments

Even if the Corps decides to obtain one or more Rational systems, they will
not be capable of supporting a large nuinber of developers. Cost-effective tools
must be found to support the remaining developers. For this purpose the Corps
requires a comprehensive tool set containing high-level analysis and design aids,
a code production environment, a database interface, a test generation facility,
software metrics collectors, and project management tools. These should be
seamlessly integrated with an intuitive interface and be available on a variety of
platforms, including PCs, RISC workstations, and CD 4000 series servers.

Unfortunately, such an environment does not exist. As a first step in that
direction, the Government has defined an Ada Programming Support Environ-
ment (APSE) to assist commercial vendors in producing comprehensive software
engineering environments. The lowest defined level is called a Minimal APSE
(MAPSE) and consists of an editor, compiler, library management system, linker,
and run time environment. Except for the latter two items, which are provided
by DOS, this MAPSE tool set is provided with the Alsys FirstAda compiler via a
menu-driven interface called Adam. Adam is actually built on top of the Alsys
AdaWorld command line environment and translates menu selections to
AdaWorld commands. In addition to the MAPSE set, other features accessible
through Adam include a verifier (fast syntax checker), source code level
debugger, reformatter, cross referencer, make facility, and a line counting metric
collector. Users may substitute their own editor for the Adam default, and access

Chapter 3 The Corps Transition to Ada 21

22

to the operating system and the AdaWorld command line environment is pro-
vided. Movice and expert modes of operation are available, which display few or
many menu options, respectively. The Adam interface takes up a significant
amount of memory. Binding a moderately sized program will occasionally fail
due to lack of memory for symbol tables; this may be remedied by switching to
the command line environment, Adaworld. In spite of this minor problem,
experience with this product indicates that it is a useful, effective, and smoothly
integrated system for Ada code production (Wheeler 1992).

The Ada Workstation Environment (AWE), marketed by AETECH, is
intended to provide a full set of Ada programming tools. Like Adam, it is built
on top of the Alsys AdaWorld command line environment running under DOS.
Its features include an editor, library manager, macro generation facility,
compiler-binder control facility, templates for types and program urits, and a
menu for support tools. These support tools, which must be purchased
separately, include an on-line Ada reference manual, an on-line computer-
assisted instruction system, a hypertext Ada reference manual, an ASCII table, a
border graphics drawing tool, tool for conversion of numbers to different bases,
and tools to perform top-down structured design, objzct-oriented design, genera-
tion of source code frorn design, and generation of procedure body from pro-
cedure specification. The basic functions work very well, and the template facil-
ity, not available in Adam, is particularly useful in making skeletons of program
units. Most common tasks have a convenient, single key operation; The built-in
editor has a native set of key functions, but may be reconfigured to emulate other
editors. The primary alternative to AWE is Adam, and Adam’s biggest advan-
tage is that it is bundled with the Alsys compiler. However, even without the
additional tools, AWE may offer enough additional functionality to be con-
sidered as an alternative, but a decision regarding its adoption should be deiayed
until a dzcision is made on whether DOS or UNIX is to be the ultimate develop-
ment environment.

Screen Generators

Screen Machine, marketed by Objective Interface Systems, is an interactive
package that provides a means of graphically creating panels on a screen, editing
these panels, and placing fields in them using the PanEdit interface. Panel infor-
mation is saved in a database and the source code to create these panels (two
complete Ada packages) is generated by the program GenCode. To complete the
interface, the programmer writes the application software to manipulate these
screens and process the input data and then modifies one of the package bodies
to handle specific input selections.

The major advantage of Screen Machine is the ease of producing the actual
panel creation source code. The user has only to enter the size, location, color,
number of fields, and any included title to create a panel, and this is done through
an interactive screen. Fields can easily be added to this panel to form a database
entry screen or just an information panel. The user is able to see the created
panel and edit it without having to write or compile any code. After the user is

Chapter 3 The Corps Transition to Ada

satisfied with the appearance of a panel, two approaches are possible: first, the
Ada program may access it as needed from a disk file, or second, the Ada source
code to create the panel may be generated and then incorporated into a program.
The former method minimizes program size, while the latter maximizes program
execution speed.

A major disadvantage of the Screen Machine is its documentation. The ver-
sion evaluated for the Corps was documented in a single three ring binder with
chapters dedicated to PanEdit, GenCode, and the package libraries. The text was
readable but vague, and lacked examples. Furthermore, the index has not been
npdated to reflect changes in the text (Wheeler 1992). Thus, the Screen Machine
is a good tool for leaming the process of screen development without having to
actually program a screen from scratch. It enables the user to see the screen as it
is being created and allows one to make changes without repetitively recompil-
ing and relinking. The version described here seemed to lack the functionality
required for more elaborate /O, although many developers at the Rational user
sites visited by the Corps were using it effectively and recommend:d it highly.
This apparent difference in capability may, however, be due to the Corps's
evaluation of Screen Machine on a PC running DOS, while the Rational sites
were using it on RISC-based workstations running UNIX and the X Window
System.

The Textual User Interface (TUI) is a screen development tool written
entirely in Ada and marketed by AdaSoft, Inc. TUI is comprised of three tools:
AdaWindows, which contains procedures for window generation and control,
AdaMenus, which deals with menus of various types, and AdaForins, which
deals with forms for input and output. Documentation for each package is pro-
vided separately and is of high quality. A facility is provided for maintaining
default values between sessions and for maintaining a history of all data entered.
Some screen builders are, in effect, low level libraries of functions, while others,
such as Screen Machine provide a much higher level of abstraction. TUI is a
compromise lying between these two extremes. It is composed of procedures
and functions, but at an intermediate level with much of the detail still hidden
from the user. TUI includes a number of useful features; for example, when an
editor is needed in a field, it is present by default and does not have to be expli-
citly invoked, used, and then exited. AdaForms handles I/O for all standard Ada
types except records and arrays. strings are the only array type allowed. In addi-
tion, it provides a List_Class, for selection from a displaved list, and a
Text_Class, for YO of multiple lines of texi. Ada type checking is performed on
input data to a field before it is accepted. The TUI is a well designed, logically
structured, flexible, well documented set of components for screen building in
Ada, and is available for both DOS and UNIX platforms (Wheeler 1992).

Chapter 3 The Corps Transition to Ada 23

Database Managers

Interfaces between Ada and DBMSs will be important to the Corps for the
development of management information systems. Possible interfaces to Oracle
have already been discussed; three additional possibilities are considered here.
The first is AdaSAGE, a public domain database generation package written in
Ada that produces a complete system, including interface screens. The second
alternative would make use of two products marketed by AdaSoft: AdaManager,
which creates and manipulates databases, and AdaQuest, which serves as an
interactive interface to AdaManager, The third possibility involves construction
of an Ada “‘wrapper’’ around an existing DBMS (dbVista III) using the Ada
interface pragma.

AdaSAGE is a public domain package developed and maintained by the
Idaho National Engineering Laboratory (INEL); it is designed to facilitate rapid
development of Ada systems. A descendant of the SAGE system developed in
FORTRAN by INEL about 10 years ago, AdaSAGE is the result of work on the
Marine Corps Combat Readiness Evaluation System (MCCRES). INEL pro-
duced a prototype of MCCRES in Ada for the Marine Corps in Alsys Ada and at
the same time converted SAGE to Ada. Primarily suited to MJS applications, its
capabilities include command line and emhedded ANSI-compliant SQL, graph-
ics, communications, formatted windows, on-line help, sortiag, editing, and
more. AdaSAGE applications can be run in the stand-alone mode or in a mul-
tiuser environment. One of the most powerful features of AdaSAGE is the Gen-
eric RApid Prototyping Language (GRAPL). This interpretive language allows
complete prototyping of a database application that can be executed interpreta-
tively without actual compilation, After the developer is satisfied with the appli-
cation, it is relatively easy to convert it to Ada. Using AdaSAGE, it is possible
to design and implement an application in a minimum of time that performs well
and is easy to modify.

All four Services have reported significant success in developing applications
with AdaSAGE; their experience has shown AdaSAGE to be equally applicable
to both small and large projects. The Government considers it to be an
extremely valuable tool and continues to fund its maintenance ‘and enhancement,
If the Corps decides to use AdaSAGE, the software itself is free, but Corps per-
sonnel should attend formal AdaSAGE training provided by INEL, and one indi-
vidual at each development site should join the AdaSAGE User's Group
($1,600/year). Asa member, this person will serve as the organization's point of
contact for AdaSAGE and will be provided with the following services: current
versions of software librarics and documentation, technical support via a tele-
phone hot line, access to electronic bulletin board services, newsletter subscrip-
tion, and invitation to the annual meeting held in Idaho Falls.

The second approach is the use of AdaManager/Adaquest. AdaManager pro-
duces a relational database that is dynamically structured rather than built on a
static schema. It allows the logical structure of the data to be changed, and addi-
tional columns to be added without unloading and reloading the data. It is possi-
ble to insert, delete, update, fetch, select, and view rows as well as join and save

24 Chapter 3 The Corps Transition to Ada

tables, and re-order rows during retrieval. The base types used are those of Ada
except that strings are the only structured types allowed. AdaQuest is an interac-
tive interface to the AdaManager database system. It is a stand-alone tool con-
taining 32 commands (procedures) and provides either menu or command line
access to all of the functions of AdaManager. Itis particularly valuable for con-
structing databases. AdaQuest can be used to define databases, tables, types, and
columns, as well as performing administrative tasks. Although it is easy to use,
it does require a knowledge of AdaManager. Documentation is complete, logi-
cally arranged, and clearly written; its high quality is consistent with that sup-
plied with other AdaSoft products (Wheeler 1992).

The final database interface discussed here is the construction of an interface
between Ada and the dbVista III package now in use fro PC-targeted, THAMA-
sponsored software. WES has developed such an interface, and it is currently
being tested. It is not anticipated that dbVista will be widely used with Ada, par-
ticularly for developing new software, but the interface may be valuable for con-
verting some existing programs to Ada when such software is being substantially
modified. The Ada interface modules and a user guide are available from WES.

Analysis and Design Aids

Rational Rose, from Rational, is a graphical CASE tool which supports
object-oriented analysis and design. It is available on IBM RS/6000 and Sun
SPARC workstations as a stand alone product; X terminals attached to those sys-
tens may also access Rose. It does not require the Rational Environment. It
allows developers to create class diagrams which serve as blueprints of high
level system abstractions, specify class attributes which provide detailed design
information, and illustrate the design through object diagrams of system mechan-
isms. Rose uses the Booch notation (Booch 1991); it enforces the notation's syn-
tax and verifies its semantics by prohibiting occurrences of multiple inheritance,
as well as by checking for class visibility and multiple class relationships. All of
the underlying information is represented in ASCII, thus it allows developers to
use their current source code control system to manage versions of the design
just as they manage versions of the code. Rose is customizable and extensible;
users may modify menus and integrate the product with other CASE tools. There
are several possibilities for output: printed PostScript, encapsulated PostScript
file, or FrameMaker-compatible file. A floating license which allows a single
copy of Rose to be shared among multiple users is available for $3,995.

Like Rose, Teamwork/Ada is also based on the X Window System.
Developed by Cadre Technologies, it is available on RISC workstations, includ-
ing those from DEC, HP, IBM, and Sun, and also on X terminals connected to
those hosts. The centerpiece of this product is the Ada Structure Graph (ASG)
editor, which allows developers to create, view, and change Ada design com-
ponents in a graphical manner using the Buhr notation (Buhr 1984). Using the
ASG, it is possible to display a diagram in several windows, thus allowing
detailed editing in a close-up view and simuitaneous visualization of the global
impact of a modification in a high-level view. Teamwork/Ada automates the

Chapter 3 The Corps Transition to Ada 25

transition from design to implementation through integration with Cadre’s Ada
Source Builder (ASB) and Design Sensitive Editor (DSE). When used with the
ASG, these two tools enforce consistency between the design and the coded
implementation, prohibiting changes that would make the design obsolete. The
ASB analyzes the output of the ASG and produces Ada code which corresponds
to the design and contains ‘‘code frames.”’ Implementation details may then be
inserted into the generated code using the DSE, but only within the code frames
The DSE automatically detects Ada syntax errors, and may be configured to
emulate other editors and to enforce site-specific coding standards. Existing Ada
code may be processed using the ASG Builder which creates ASGs from source
code in order to facilitate reuse, reengineering, and maintenance. Information
produced during this design process is saved in a project database and may then
be accessed by the Document Production Interface, Teamwork/DPI, to produce
documentation compliant with DoD-STD-2167A. Teamwork/Ada is part of
Cadre's Teamwork environment which includes facilities for simulation of
software systems, construction of real-time systems, modeling of information,
and communication with widely-used DBMSs (e.g., Ingres, Oracle, and Sybase).
If the Corps decides to use the Rational Environment, Teamwork’s interface to
that system would make it a powerful addition to the coding environment. If the
Corps decides against Rational, Teamwork, along with an appropriate compila-
tion system, is surely one of the top contenders for an integrated development
environment.

Metrics Collectors

An important aspect of the development process is quality control. Unless
data is obtained to measure program quality, this will be difficult, if not impossi-
ble. One such tool for gathering these data is AdaMAT, from Dynamics
Research Corporation. This is a static source code analyzer which uses
DIANA-based metrics to measure management concerns such as reliability, por-
tability, and maintainability, as well as software engineering concerns such as
code simplicity, modularity, self-descriptiveness, clarity, and independence.
These scores are calculated by calculating the ratio between the number of
adherences to a particular guideline and the total number of adherences and
nonadherences. AdaMAT is useful in many activities throughout a project,
including design assessment, code walk throughs, error prevention and
discovery, system installation and checkout, and maintenance.

How to Proceed

The use of Ada offers many advantages over other languages. Many of its
features were specifically intended to support good software engineering prac-
tice; examples include its library consistency requirement its extremely thorough
compile time checking. ts technical advantages are clearly seen and other
languages, e.g., Turbo Pascal, Modula-2, and C++, have attempted to incorporate
at least some of its features. Since Ada is more advanced than many other

26 Chapter 3 The Corps Transiticn to Ada

language systems, it requires a higher level of sophistication for optimum use. It
must be systematically introduced or chaos can result.

A well conceived plan should be followed which will promote a smooth tran-
sition to Ada without false starts and wasted effort. The following paragraphs
propose an outline of this plan. Throughout the transition, the key to success
will lie in the education of the personnel involved. Management must recognize
that several years will elapse before development staff acquire the expertise and
fully adopt the techniques that will produce the dramatic cost savings advertised
by various Ada proponents. Development staff members must realize that formal
training is only the first step in their personal transition to Ada, and that they
must understand and then put into practice not just new programming language
syntax, but a new development philosophy as well. Furthermore, project spon-
sors must understand that software engineering is engineering. If they were
sponsoring a civil works project, such as the construction of a suspension bridge,
they would not show up at the site a month after project initiation and ask what
percent of the bridge has been completed or ask for a prototype bridge to drive
over in order to determine its ‘‘look and feel."" They must understand that the
new development process to be instituted as part of this transition will involve
more initial planning and less time spent coding and that the result will be a pro-
duct which is more reliable and easier to maintain. Finally, everyone should
realize that some aspects of the transition will be perpetual. Specifically, pro-
cedures and techniques must periodically evaluated and if they have proven
ineffective, or if new technology has rendered them obsolete, then they must be
changed.

It is imperative that several steps be immediately taken to begin the transition
to use of Ada. If they are not, the first several projects implemented in Ada will
be delayed while developers acquire expertise in the Ada language, object-
oriented design, and software engineering methods and tools. These near-term
actions, to be completed during the first year of the transition, include:

¢ Acquisition of Ada compilers. Alsys FirstAda seems to be a good first choice
for PC platforms, although if an interface to Microsoft Windows is necessary,
the Meridian product should be considered, as well. The Verdix compiler
should be viewed as a strong contender for RISC-based workstations.

e Acquisition of an APSE for PC platforms. The selection of this environment
will depend on the hardware/OS/compiler combination under consideration.
For 80X86/DOS/Alsys, the Adam interface bundled with the Alsys compiler
is a reasonable, cost-effective choice. For RISC-based workstations running
UNIX, the situation is similar in that a high-quality APSE is available from
the compiler vendor; this is particularly true of the Verdix compiler and its
associated VADSpro programming environment.

¢ Initiation of an Ada training sequence. Many training vendors, e.g., EVB,
Fastrak Training, and Texel, have courses that cover the topics listed earlier.
One should be selected and an initial group should begin a formal training
sequence.

Chapter 3 The Corps Transition to Ada 27

¢ Selection of potential Ada experts. These individuals should immediately be
assigned the tasks noted earlier, specifically those associated with reviewing
current Ada technology and with assisting other developers in making the
transition.

e Acquisition of Ada reference materials. These include the serials noted pre-
viously as well as items from the bibliography.

o Adoption of software engineering methodology as standard practice. This
includes, among other things, development of formal design specifications,
application of object-oriented design techniques, adoption of and adherence
to an Ada style guide, code walkthroughs, thorough testing, and collection of
software and productivity metrics for individuals as well as for the group as a
whole.

o Decide whether or not to obtain the Rational Environment. This is an impor-
tant initial decision on wiiich many future decisions will depend, including
selection of hardware, compilers, and CASE tools. Furthermore, if the deci-
sion is positive, then time must be allowed to train personnel in the use of the
system.

Other tasks are equally important but need not be accomplished right away;
work on them should begin during the first year of the transition and be com-
pleted by the end of the second. Note, however, that some of them are ongoing
activities.

o Continuous investigation of available Ada technology. All of the areas dis-
cussed in this report require constant monitoring. Knowledge of advances in
software engineering methodologies, CASE tools, and object-oriented tech-
nology, progress at Government laboratories, and status of other large-scale
Ada projects will all be useful in current development efforts.

¢ Adoption of a reuse policy. The Ada experts noted above must investigate
existing Government software repositories to determine what components
will be useful to current projects. A local reuse library must be established.

e Acquire one or more RISC-based UNIX workstations. These platforms sup-
port better CASE tools and provide a development environment with more
functionality. Appropriate tools should be purchased simultaneously, e.g.,
Cadre’s Teamwork, HP’s SoftBench, IDE’s Software Through Pictures, and
Rational Rose. These should be tested on a small project in a prototype
fashion and the most promising product employed on subsequent projects.

e Encourage employees to stay current in the field. As part of their job assign-
ment, employees should periodically review books, journal articles, case stu-
dies, or products and prepare a review; this could then be shared with the rest
of the staff in a short one-hour presentation. If this were scheduled once a
month, perhaps as a brown-bag lunicheon/seminar, then it would not be bur-
densome to the presenter or the staff.

28 Chapter 3 The Corps Transition to Ada

e Review progress in making the transition. This involves evaluation of all of
the short-term steps noted above and making any necessary mid-course
corrections. Specifically, attention should be paid to modification of estimat-
ing models based on experience with Ada to date, evaluation and possible
revision of the training program, review and enhancement of software
engineering techniques and tools, and updating library holdings on Ada and
software engineering,

¢ Make plans for future efforts. Plans should be made to address the following
issues: use of code generators, applications of artificial intelligence in the
project’s functional domain, and the transition to Ada 9X.

¢ Plan to participate in an SEI Software Process Assessment. This accredita-
tion procedure evaluates an organization’s state of software development
practice based on the SEI Capability Maturity Model. This scale of this
model’s evaluation ranges from 1, which describes an ad hoc, chaotic situa-
tion to 5, which describes a software development approach that is repeat-
able, defined, managed, and optimizing. This is possibly the most important
of all the recomi.iendations.

The munc' ite to use Ada should be viewed as an opportunity for the Corps to
assume a leadership role within the Army in the area of software development.
The Corps of Engineers has a long history of engineering many things well, and
there is no reason why the Corps should not engineer software well, too. Hope-
fully this report has provided initial guidance which will help make that goal a
reality.

Chapter 3 The Corps Transition to Ada

29

References

Ada 9X Project Office. (February 1991). Ada 9X revisions relating to informa-
tion systems applications, Fact Sheet.

Booch, G. (1991). Object-oriented design with applications.
Benjamin/Cummings, Menlo Park, California.

Buhr, R.J. (1984). System design with Ada. Prentice-Hall, Englewood Cliffs,
New Jersey.

Cohen, N. H. (1986). Ada as a second language. McGraw Hill, New York,

Cumow, H. J. and Wichman, B. A. (February 1976). *'A synthetic benchmark,”’
the Computer Journal 19(1), 43-49,

D. Appleton Company. (1992). Corporate information management process
improvement methodology for DoD functional managers. D. Appleton Com-
pany, Fairfax, Virginia.

Feiler, P, Dart, S., and Downey, G. (1988). An evaluaiion of the Rational
Environment (CMU/SEI-88-TR-15), Software Engineering Institute, Pitts-
burgh, Pennsylvania.

Frakes, W. B., Fox, C.J,, and Nejmeh, B. A. (1991). Software engineering in the
UNIX/C environment. Prentice-Hall, Englewood Cliffs, New Jersey.

Goos, G., Wulf, W. A, Evans, A.Jr, and Butler, K. J. (1983). DIANA: an inter-
mediate language for Ada. Lecture Notes in Computer Science, 161,
Springer-Verlag, Berlin.

Institute for Electrical and Electronic Engineers. (1983). IEEE standard glos-
sary of software engineering terminology. 1EEE Std 729-1983, Institute for
Electrical and Electronic Engineers, New York.

. (1984). IEEE standard for software quality assurance plans.
IEEE Std 730-1984, Institute for Electrical and Electronic Engineers, New

30 Refarances

York.

. (1986). IEEE standard for software quality assurance planning.
IEEE Std 983-1986, Institute for Electrical and Electronic Engineers, New
York.

Johansen, R. (1988). Groupware: computer support for business teams. The
Free Press, New York.

National Institute of Standards and Technology. (November 8 1985). Ada.
Federal Information Processing Standards Publication (FIPSPUB) 119, U.S.
Department of Commerce, National Institute of Standards and Technology,
Computer Systems Laboratory, Gaithersburg, Maryland.

. (February 2 1990). Database language SQL. Federal Informa-
tion Processing Standards Publication (FIPSPUB) 127-1, U.S. Department of
Commerce, National Institute of Standards and Technology, Computer Sys-
tems Laboratory, Gaithersburg, Maryland.

. (May 29 1990). The user interface component of the applica-
tions portability profile. Federal Information Processing Standards Publica-
tion (FIPSPUB) 158, U.S. Department of Commerce, National Institute of
Standards and Technology, Computer Systems Laboratory, Gaithersburg,
Maryland,

. (October 1991). Federal Information Processing Standards Pub-
lications (FIPSPUBS) index. NIST Publications List 58, U.S. Department of
Commerce, National Institute of Standards and Technology, Computer Sys-
tems Laboratory, Gaithersburg, Maryland.

Nyberg, K. A. (1991). Ada: sources & resources. Grebyn Corporation, Vienna,
Virginia.

Systems Research and Applications Corporation (SRA),. (October 9 1992). dis-
cussion between SRA and Corps personnel regarding the Rational Environ-
ment and altematives, Fairfax, Virginia.

P. P. Texel & Co.. (1992). Ada coding (Version 3.1), P. P. Texel & Co., Eaton-
town, New Jersey.

. (1992). Object-oriented design with Ada (Version 3.1), P. P.
Texel & Co., Eatontown, New Jersey.

— .. (1992). Object-oriented requirements analysis (Version 3.1), P.
P. Texel & Co., Eatontown, New Jersey.

U.S. Congress. (Novemiber 5 1990). Public Law 101-511, U.S. Congress, Wash-
ington.

References 31

U.S. Department of Defense. (April 2 1987). Computer programming language
policy (DoD Directive 3405.1), U.S. Department of Defense, Washington.

U.S. Department of the Air Force. (July 9 1991). Ada and C++: a business case
analysis, U.S. Department of the Air Force, Washington.

U.S. Department of the Army. (July 16 1990). Implementation of the Ada pro-
gramming language (HQDA LTR 25-90-1), U.S. Department of the Army,
Washington.

U.S. General Accounting Office. (November 9 1979). Contracting for computer
software development--serious problems require management atlention to
avoid wasting additional millions (FGMSD-80-4), U.S. General Accounting
Office, Washington.

Wheeler, O. E. (September 30 1992). Ada transition study (prepared for the
Waterways Experiment Station under Contract Number DACA39-92-K-
0018), Memphis State University, Mempbhis, Tennessee.

32 References

Bibliography!

Andrews, E., ed. Concurrent programming with Ada. 3enjamin-Cummings,
Menlo Park, California. (ISBN: 0-3053-0088-0; $19.16/paper text®

Atkinson, C. (1991). Object-oriented reuse, concurrency and distribution: an
Ada-based approach. Addison-Wesley, Reading, Massachusetts. 270 pp.
(ISBN: 0-201-56527-7, $37.75)

The book includes an introduction tc DRAGOON, the object-oriented
language that combines the power of object- oriented languages with the
software engineering fzatures of Ada; examples of DRAGOON’s use of mul-
tiple inheritance to handle aspects of concurrency and distribution; illustra-
tions of how DRAGOON's features my be implemented in Ada.

Atkinson C., et al. (1988). Ada for distributed systems. Ada Companion Series,
Car oridge University Press, Cambridge. 147 pp. (ISBN: 0-521-36154-0;
$39.50)

Describes the final report of the Distributed Ada DEMonsirated (DIADEM)
project, which studied the problems and developed solutions for using Ada to
program real-time, distributed control systems. Demonstrates new techniques
for controlling such systems from a distributed Ada program.

Ausnit, C. N,, et al. (1985). Ada in practice. Professional Computing Series,
Springer-Verlag, Berlin. 195 pp. (ISBN: 0-521-36154-0; $32.50)

Identifies and resolves 1ssues related to Ada usage and promotes effective use
of Ada in general programming, design practice, and in embedded computer
systems. Contawns 15 case studies that cover five general areas of the Ada
language: naming conventions, types, coding paradigms, exceptions and pro-
gram structure.

‘ Copyright 1992. 1IT Research Institute. All rights assigned to the U.S. Government (Ada Joint
Program Office). Permission to reprint this flyer, in whole or in part, is granted. provided the
AdalC is acknowledged as the source. If this flyer is reprinted as part of a published document,
pleasc send a courtesy copy of the publication to Ada"C, c/o IIT Research Institute, 4600 Forbes
Boulevard, Lanham, MD 20706-4320. The AdalC is sponsored by the Ada Joint Program Office.

Bibliography 33

Buier, L. (1989). Artificial intelligence with Ada. McGraw-Hill, New York.
361 pp. (ISEN: 0-07-003350-1; $39.95)

Presents approxiniately 8,000 lines of full coding in Ada along with functions
which include backward-chaining expert systems shells forward chaining
expert systems shells and an ATN natural language parse:. Discusses the
code for implementing each program and illustrates each by one ot more
examples.

Bames, J. G. P. (1989). Programming in Ada. Addison-Wesley, Reading, Mas-
sachusetts. 494 pp. (ISBN: 0-201-17566-5; $32.25)

Discusses Ada using a tutorial style with numerous examples and exercises.
Assumes readers have some knowledge of the principles of programming.
Covers the following: Ada concepts, lexical style, scalar types, control struc-
tures, composite types subprograms, overall structures, private types, excep-
tions advanced types, numerics types, generics tasking, external interfaces.

Baum, J. (1986). The calculating passion of Ada Byron. Archon Books, Ham-
den, Connecticut. 133 pp. (ISBN: 0-208-02119-1; $23.50)

Details the life of Ada Byron, her training in mathematics, her tumultuous
relationship with her mother and her contribution to the study of science. |

Berzins, V. and Berzins, L. (1991). Software engineering with abstractions.
Addisoni-Wesley, Reading, Massachusetts. (ISBN: 0-201-08004-4)

Biggerstaff, T. J. and Perlis, A. J., eds. (1989). Software reusability concepts
and models: Volume 1: concepts and models. ACM Press, New York.
(ISBN: 0-201-08017-6)

. (1989). Software reusability concepts and models: Volume 2:
applications and experience. ACM Press, New York. (ISBN: 0-201-50018-
3)

Bjoerner, D. and Oest, O. N. (1980). Towards a formal description of Ada. Lec-
ture Notes in Computer Science, Springer-Verlag, Berlin. 630 pp. (ISBN: 0-
387-102833; $31.00/trade)

Describes the Ada programming language, discusses compiler development
and provides a formal definition of Ada.

Booch, G. (1991). Object oriented design with applications. Benjamin-
Cummings, Menlo Park, California. (ISBN: 0-8053-0091-0)

Offers guidance for constructing object-oriented syste: s and provides a
description of object-oriented design methods. Includes examples drawn
from the author’s experience in developing software systems and five appli-
cation projects.

. (1988). Software engineering with Ada. Benjamin-Cummings,

34 Bibliography

Menlo Park, California. 580 pp. (ISBN: 0-8053-0604-8; $31.95)

Introduces Ada from a software engineering vantage. Addresses the issues of
building complex systems. Includes new feature: 'n this second version: a
more thorough introduction to Ada syntax and semantics, an updated section
on object-oriented techniques to reflect the current state of knowledge and
improved examples that illustrate good Ada style for production systems
development.

Booch, G. (1987). Software components With Ada: structures, touls, and sub-
systems. Benjamin-Cummings, Menlo Park, California. 635 pp. ISBN: 0-
8053-0609-9; $35.50/paper)

Catalogs reusable software components and provides examples of Ada pro-
gramming style. Presents a study of data structures and algorithms using
Ada.

Bott, ¥., ed. (1991). Ada yearbook 1991. Van Nostrand Reinhold, New York.
(ISBN: 0-442-30836-1; $54.95/trade)

Bover, D. (1991). Introduction to Ada. Addison-Wesley, Reading, Mas-
sachusetts. (ISBN: 0-201-50992-X; $30.25/trade)

Bryan, D. L. and Mendal, G. (1990). Exploring Ada: Volume 1. Prentice-Hall,
Englewood Cliffs, New Jersey. (ISBN: 0-13-295684-5; $34.00/text) (See
Volume 2 under Mendal)

Describes Ada’s type model, statements, packages and subprograms.
Includes programming features such as information hiding, facilities to model
parallel tasks, data abstraction, and software reuse.

Bryant, R. and Vaget, B. W, eds. (1984). Simulation in strongly typed
languages: Ada, Pascal, Simula. SCS Simulation Series, 13, Society for
Computer Simulation, San Diego, California. (ISBN: 0-317-05019-2;
$36.00/trade)

Buhr, R.J. (1990). Practical visual techniques in system design with applica-
tions to Ada. Prentice-Hall, Englewood Cliffs, New Jersey. 533 pp.
(ISBN:0-13-880808-2; $43.20/casebound)

Offers a personal staternent on how to use visual techniques to organize one's
thinking during the design process.

— . (1984). Svstem design with Ada. Prentice-Hall, Englewood
Cliffs, New Jersey. 256 pp. (ISBN: 0-13-880808-2; $48.00 paperback)
(ISBN:0-13-881623-9; $55.00/text)

Stresses aspects of Ada important for design. Aims numerous examples of
notations at teaching, learning, CAD, and uses in industrial practice. Con-
tains three divisions: 1) provides a top down overview of the design features
of Ada; 2) develops the design notation and provides a tutorial on the design
process using simple examples; 3) treats advanced issues such as

Bibliography

35

implementing the X.25 packet switching protocol.

Burns, A. (1992). Towards Ada9X. 10S Press. (ISBN: 90-5199-075-8)

This book is a collection of edited papers on the general theme of Ada 9X.
"Two papers directly address the likely language changes. The first of these is
written by one of the Ada9X distinguished reviewers. The second is by one
of the team members that is actually implementing the language changes. A
further paper describes how the new language features will directly support
the programming of hard real-time systems. The book includes a paper writ-
ten by the chairman of the ARTEWG group, that describes the new release of
the catalog of interface features and options for an Ada run-time system
(CIFO). Other areas covered include interface bindings, such as to SQL or
POSIX, to Ada.

. (1985). Concurrent programming in Ada. Ada Companion
Series, Cambridge University Press, Cambridge. 241 pp. (ISBN: 0-521-
30033-9; $34.50/trade)

Reports on Ada tasking offering a detailed description and an assessment of
the Ada language concerned with concurrent programming.

Burns, A. and Wellings, A. (1990). Real-time systems and their programming
languages. Addison-Wesley, Reading, Massachusetts. 575 pp. (ISBN: 0-
201-17529-0)

Provides a study of real-time systems engineering, and describes and evalu-
ates the programming languages used in this domain. Considers three pro-
gramming lanpuages in detail: Ada, Modula-2, and Occam2.

Burns, A. (1987). A review of Adu tasking. Lecture Notes in Computer Science,
262, Springer-Verlag, Berlin. (ISBN: 0-387-18008-7; $15.50)

Byrne, W. E. (1991). Software design techniques for large Ada systems. Digilal
Press, Burlington, Massachusetts. 314 pp. (ISBN: 1-55558-053-X; $45)

Introduces design strategies for controlling complexities inherent ir large
computer programs and in software systems as groups of large computer pro-
grams executing concurrently. Focuses primarily on issues associated with
the design of software systems as a whole rather than on localized design and
coding issues.

Caverly, P. and Goldstein, P. (1986). Introduction to Ada: a top down approach
Jor programmers. Brooks-Cole, Monterey, California. 237 pp. (ISBN:0-
534-05820-5; $18.50/paper)

Organizes and emphasizes those features that distinguish Ada from other pro-
gramming languages. Uses a cyclical approach to the treatment of many
topics. Gives a brief history of the development of the Ada language. Intro-
duces the 1/O capabilities, procedures, character and numeric data types and
subtypes, and the concept of an Ada program library. Discusses enumeration,
array, record, and derived types, and dernonstrates how the package can be

g-_@' 36 Bibliography

used to encapsulate data types. Explains access types and applications and
the encapsulation of data objects in packages. Illustrates how finite-state
machines can be represented by packages. Describes the essentials of task-
ing and deals with blocks and exceptions. Introduces the reader to private
types types with discriminates, and generic units.

Cherry, G. W. (1984). Parallel programming in ANSI standard Ada. Prentice-
Hall, Englewood Cliffs, New Jersey. 231 pp. ISBN: 08359-5434-X;
$48.00/text)

Explores parallel sorting, searching, root finding, process pipelining object
(data) flow graphs, exception handling, etc., using Ada.

Chirlian, P. M. (1985). Introduction to Ada. Weber Systems. 291 pp. (ISBN:
0-916460-42-8; $19.95)

Provides a basic course in the Ada programming language. (Ada courses
and/or self-study)

Clark, R. G. (1985). Programming in Ada: a first course. Cambridge University
Press, Cambridge. 215 pp. (ISBN: 0-521-25728-X; $47.50/trade) (ISBN: 0-
521-27675-6; $21 .95/paper)

Introduces the Ada programming language. Targets persons without previous
experience in programming. Details how to design solutions on a computer.
Concentrates on solving simple problems in the early sections: the later sec-
tions explore how packages can be used in constructing large reliable pro-
grams. Emphasizes central features such as data types, subprograms, pack-
ages, separate compilation, exceptions and files. ANSUMIL-STD-1815A-
1983 is referenced throughout the book.

Cohen, N. C. (1986). Ada as a second language. McGraw-Hill, New York. 838
pp. ISBN: 0-07-011589-3; $36.04/paper)

Explains Ada to those who wish to acquire a reading and writing knowledge
of the Ada language. Also a programming reference source.

Conn, R, ed. (1990). Ada software repository (asr). Zoetrope. 35 pp. (ISBN:
0-918432-78-2; $16.95/paper)

Describes how to use the Ada Software Repository, which contains Ada pro-
grams, scftware components, and educational materials, and resides on the
host computer of the Defense Data Network (DDN).

Culwin, Ada: a developmental approach. Prentice-Hall, Englewood Cliffs, New
Jersey.

Intended for use on courses which teach Ada as the first programming
language. The book is designed to take the reader from the basic principles
of programming to advanced techniques. This book provides a complete
introduction to software development using the programming language, Ada.
It is not only concerned with the production of Ada programs, but it is also an

Bibllography

37

introduction to the process of implementation and testing. Features include:
a carefully structured tutorial which includes software development, design,
testing, and production.

Dawes, J., et al.,, ed. (1990). Selecting an Ada compilation system. Ada Com-
panion Series, Cambridge Uriversity Press, Cambridge. 173 pp. (ISBN:0-
521-40498-3; $42.95)

Presents the findings of the Ada-Europe specialist group for compiler assess-
ment.

Dawes, J. (1988). The professional programmers guide to Ada. Pittman Pub-
lishing, Marshfield, Massachusetts. (ISBN: 0-273-02821-9; $100.00x)

Dorchak, S. F. and Rice, P. B. (1989). Writing readable Ada: a case study
approach, Heath, Lexington, Massachusetts. 244 pp. (ISBN: 0-669-12616-0;
$17.00)

Contains a style guide, which gives suggestions for enhancing code readabil-
ity; devotes a chapter to the discussion of concurrency, an advanced fcature
of modern programming languages; a fully coded Ada program, along with a
sample run; a bibliography, which lists books and articles about Ada and
software engineering principles, two indexes, one devoted exclusively to
references of case study modules and the other listing important topics and
concepts.

Elbert, T. F. (1989). Embedded programming in Ada. Van Nostrand Reinhold,
New York. 523 pp. (ISBN: 0-442-22350-1; $55.00/trade)

Clarifies Ada for the practicing programmer and for the advanced engineer-
ing or computer science student. Assumes the reader has acquired a certain
level of sophistication, general concepts normally found in introductory pro-
gramming texts are not covered. Also, presumes the reader is familiar with
operating systems and has a basic knowledge of some block-structured
language such as PL/1 and Pascal.

Feldman, M. B. and Koffman, E.B. (1991). Ada problem solving & program
design. Addison-Wesley, Reading, Massachusetts. (ISBN:0-201-5006-
3/diskette) (ISBN:0-201-55560/trade)

Presents Ada to the beginning programmer with emphasis on packages. Con-

tains no dynamic data structures, pointers, or tasking.

Feldman, M. B. (1985). Data structures with Ada. Prentice-Hall, Englewood
Cliffs, New Jersey. 314 pp.

Highlights the use of Ada as a general purpose programming language.
Includes the following: linked lists, queues and stacks, graphs, trees hash
methods, sorting, etc. Does not include generics; it was written before com-
pilers could handle generics. Free software available from the author.

38 Bibliography

Feuer, A. R. and Gehani, N. (1984). Comparing & assessing programming
languages: Ada, C & Pascal. Prentice-Hall, Englewood Cliffs, New Jersey.
(ISBN: 0-13-154840-9; $32.00/paper text)

Fisher, D. A, ed. (1986). Ada language reference manual. Gensoft Corp..
(ISBN: 0-9618252-0-0; $12.95/paper text)

Fisher, G, ed. (1989). Approved Ada language commentaries. Ada Letters
Series, 9, ACM Press, New York. (ISBN: 0-89791-311-6; $30.00/paper text)

Ford, B, et al. (1987). Scientific Ada. Ada Companion Series, Cambridge
University Press, Cambridge. 386 pp. (ISBN: 0-521-33258-3; $44.50/trade)

Explores aspects of the Ada programming language that are relevant to the
scientific (i.e., numeric) community at large. Concentrates on the numeric
models of Ada and a number of Ada-specific features (e.g., generics).
Reviews guidelines for the design of large scientific libraries in Ada.

Gautier, R. J. and Wallis, P. J. (1990). Software reuse with Ada. Peregrinus
Ltd., Stevenage, Hertfordshire, England. 205 pp. (ISBN: 0-86341-173-8)

Contains three sections: 1) general reuse issues, comprises a collection of
papers on various aspects of Ada software reuse; 2) case studies of Ada reuse
in practice; and 3) Ada Reuse Guidelines which appear in their {:nal form in
this section,

Gehani, N. (1989). Ada: an advanced introduction. Prentice-Hall, Englewood
Cliffs, New Jersey. 280 pp. (ISBN: 0-13-004334-6 $32.40/paper)

Introduces advanced problem-solving in Ada. Emphasizes modular program-
ming as good programming practice.

—. (1984). Ada: concurrent programming. Prentice-Hall, Engle-
wood Cliffs, New Jersey. 261 pp. (ISBN: 0-13-004011-8; out of print)

Offers a large collection of concurrent algorithms, expressed in terms of the
constructs provided by Ada, as the support for concurrent computation.
Explains the concurrent programming facilities in Ada and shows how to use
them effectively in writing concurrent programs. Surveys concurrent pro-
gramming in other languages, and discusses issues specific to concurrent pro-
gramming facilities in Ada.

. (1987). Unix Ada programming. Prentice-Hall, Englewood
Cliffs, New Jersey. 310 pp. (ISBN: 0-13-038325-5; $34.00/paper)

Focuses on the novel aspects of the Ada language and explains them by many
examples written out in full. Examines the interesting differences between
the Ada language and other programming languages. Also, notes the similar-
ities between Ada, Pascal, C, PL/], and Fortran.

Gilpin, G. (1987). Ada: a guided tour and tutorial. Prentice-Hall, Englewood

Blbliography 39

Cliffs, New Jersey. 410 pp. (ISBN: 0-13-73599-0; $21.95/paper)

Reports on the developments in control structures, scalar data types multi-
tasking, program structure and access types.

Goldsack, S.J. (1986). Ada jor specification: possibility and limitations. Ada
Companion Series, Cambridge University Press, Cambridge. 265 pp. (ISBN:
0-521-30853-4; $7.50/trade)

Examines the use, role, features and purpose of specification languages, par-
ticularly Ada, in a large-scale software project.

Gonzalez, D. W. (1991). Ada programmer’s handbook. Benjamin-Cummings,
Menlo Park, California. (ISBN: 0-8053-2529-8; $13.95/paper)

. (1991). Ada programmer’s handbook and language reference
manual. Benjamin-Cummings, Menlo Park, California. 200 pp. (ISBN: 0-
8053-2528-X; 19.95/paper)

Presents information intended for those professionals transitioning to Ada.
includes a glossary.

Goos, G,, et al. (1987). Diana: an intermediate language for Ada. Lecture
Notes in Computer Science, Springer-Verlag, Berlin. 201 pp. (ISBN: 0-387-
12695-3; $20.00/paper)

Describes DIANA, a Descriptive Intermediate attributed Notation for Ada,
which resulted from a merger of the properties of tv, o zarlier similar inter-
mediate forms: TCOL and AIDA.

Habermann, A. and Perry, D. E. (1983). Ada for experienced programmeis.
Computer Science Series, Addison-Wesley, Reading, Massachusetts. 480 pp.
(ISBN: 0-201-11481-X; $29.25/paper)

Offers a comparative review of Ada and Pascal, using dual program examples
to illustrate software engineering techniques.

Habermann, A. N.,ed. (1987.). System developmen: & Ada. Lecture Notes in
Computer Science, 275, Springer-Verlag, Berlin. (ISBN: 0-387-18341-8;
$25.70/paper)

Heilbrunner, S. (1988). Ada in industry: Proceedings of the Ada-Europe Inter-
national Conference, Munich, June 7-9, 1988. Ada Companion Series, Cam-
bridge University Press, Cambridge. 262 pp. (ISBN:0-521-36347-0;
$42.50/trade)

Provides state of the art reports on the Ada programming language.

Hibbard, P., et al. (1983). Studies in Ada style. Springer-Verlag, Berlin. 101 pp.
(ISBN: 0-387-90816-1; $21.50/paper)

Presents concepts of the abstractions embodied in Ada with five examples: a
queue, a graph structure, a console driver, a table handler and & solution to

40 Bibliography

Laplace’s equation using multiple tasks.

Ichbiah, J., et al. (1991). Rationale for the design of the Ada programming
language. Cambridge University Press, Cambridge. (ISBN: 0-521-39267-5;
$54.95)

Presents the rationale behind the design and development of the Ada pro-
gramming language.

Johnson, P. 1. (1985). The Ada primer. McGrawi-Hill, New York. (out of print)

. (1990). Ada applications and administration. McGraw-Hill,
New York. 209 pp. (ISBN: 0-07-032627-4I1SBN; $39.95/Text edition)

Explains how to ensure the reliable, error-free, cost-effective operation of
large computer systems with Ada. Updates and revises earlier edition (first
entitled The Ada Primer).

Jones, D. (1989). Ada in action with practical programming examples. John
Wiley & Sons, New York. 487 pp. ISBN: 0-471-50747-4; $57.95/text)
(ISBN: 0-471-60708-8; $34.95/paper text)

Helps Ada programmers avoid common pitfalls and provides them with many
reusable Ada routines. Discusses a variety of numeric considerations user
interfaces, utility routines, and software engineering and testing. Provides
examples of Ada code.

Katzan, H. Jr. (1984). Invitation to Ada (condensed edition). Petrocelli, Prince-
ton, New Jersey. 173 pp. (out of print)
Introduces Ada in terms of three broad classes of applications: numerical,

system programming, and real-time programming.

——. (1984). Invitation to Ada. Petrocelli, Princeton, New Jersey.
(ISBN: 0-89433-239-2; $14.95/paper text)

. (1982). Invitation to Ada & the Ada reference manual. Petro-
celli. 429 pp. (ISBN: 0-89433-132-9, $34.95/text)
Calls for the scientific computing community to adopt the Ada programming

language. Part Il is the Ada Reference Manual 1980 version.

Keeffe, D., et al. (1985). Pulse: an Ada-based distributed operating system.
APIC Studies in Data Processing, 26, Academic Press, New York. (ISBN: 0-
12-402979-1; $39.95/paper)

Keller, J. (1988). The Adu challenge 1988: strategies risk & payoffs. Pasha
Publications. (ISBN: 0-935453-22-9; $174.00/paper)

Krell, B. (1992). Developing with Ada: life-cycle methods. Bantam Books,
New York. (ISBN 0-553-0909-3; $54.95/hard cover)

Dr. Krell offers his opinion on the key to using Ada to its fullest potential: a

Bibliography 41

tested development methodology for implementing real-time Ada systems
quickly and efficiently, from requirements and code generation through
design and test. By applying the steps outlined in Dr. Krell's book, "software
engineers can create real-time systems that are flexible, integrate easily, per-
form well, and satisfy user needs," according to the publisher.

Krieg-Brueckner, B., et al., ed. (1987). Anna: a language for annotating Ada
programs. Lecture Notes in Computer Science, 260, Springer-Verlag, Berlin.
(ISBN: 0-387-17980-1; $15.50/paper)

Ledgard, H. (1983). Ada: a first introduction. Springer-Verlag, Berlin. 130 pp.
(ISBN: 0-540-90814-5)

Assumes that the reader has experience with some other higher order pro-
gramming language. Outlines severa. key features of Ada; a treatment of the
facilities -- concept of data types, the basic statements in the language, sub-
programs, packages, and general program structure.

—. (1987). Ada: an introduction. Springer-Verlag, Berlin. (ISBN:
0-387-90814-5; $22.00/paper text)

Lewi, P. and Paredaens, J. Data structures of Pascal, Algol Sixty-Eight, PL-1 &
Ada. (ISBN:0-387-15121-4; $49.00/paper)

Lomuto, N. (1987). Problem solving methods with examples in Ada. Prentice-
Hall, Englewood Cliffs, New Jersey. 176 pp. (ISBN: 0-13-721325-5)

Contains a collection of hints on solving programming problems. Includes
examples along with sections on the art of thinking, analyzing the sroblem,
systematic development, looking back, ideas for ideas, and case studies.

Luckham, D. C., et al. (1990). Programming with specifications: an introduc-
tion to ANNA, a Language for Specifying Ada Programs. Texts and Mono-
graphs in Computer Science, Springer-Verlag, Berlin. 416 pp. (ISBN: 0-387-
97254-4)

Offers an in-depth look at ANNA, a form of the Ada language in which spe-
cially marked comments act as formal annotations about the program to
which they are attached.

Lynch, B., ed. (1990). Adua: experiences & prospecis: Proceedings of the Adu-
Europe International Conference, Dublin, 1990. Ada Companion Series,
Cambridge Unpiversity Press, Cambridge. (ISBN: 0-521-39522-4,
$9.50/trade)

Lyons, T. G. (1986). Selecting an Ada environment. Ada Companion Series,
Cambridge University Press, Cambridge. 239 pp. (ISBN: 0-521-32594-3
(British); $29.95/trade)

Provides an overview of the Ada Programming Support Environment (APSE).
Covers six main issues in selecting an environment. Contains summarties of
current approaches to likely problems, indications of deficiencies in existing

42 Bibliography

knowledge, and checklists of questions to ask when considering a particular
environment.

McDerinid, J. A. and Ripken, K. (1984). Life cycle support in the Ada environ-
ment. Ada Companion Series, Cambridge University Press, Cambridge. (out
of print)

McGettrick, A. D. (1982). Program verification using Ada. Cambridge Univer-
sity Press, Cambridge. 345 pp. (ISBN: 0-521-24215-0; $57.50/Trade) (ISBN:
0-521-28531-3; $29.95/paper)

Discusses such topics as correctness of nonbranching programs invariants
and termination proofs via well formed sets, elementary types, arrays,
records, access types, packages as well as an encapsulation mechanism for
abstract data types, and parallelism.

Miller, N. E. and Peterson, C. (1989). File structures with Ada. Benjamin-
Cummings, Menlo Park, California. (ISBN-8053-0440-1; $39.95/text)

Mendal, G. and Bryan, D. L. (1992). Exploring Ada: Volume 2. Prentice-Hall,
Englewood Cliffs, New Jersey. (ISBN: 0-13-297227-1) (See Volume | under
Bryan)

A method of presentation based on the Socratic method, provides coverage
and the semantics of Ada. Discusses focused problems individually. The
second volume expands on the larger issues dealing with Ada’s more
advanced features.

Mohnkern, G. L. and Mohnkern, B. (1986). Applied Ada. TAB Books, Blue
Ridge Surnmit, Pennsylvania. 326 pp. (ISBN: 0-8306-2736-7)

Introduces the Ada language on a practical level. Targets persons who under-
stand the basic terminology and concepts of programming. (A particular
language is not a prerequisite.) Instructs through examples of programs writ-
ten in Ada.

Musser, D. R. and Stepanov, A. A. (1989). The Ada generic library linear list
processing packages. Springer-Verlag, Berlin. 265 pp. (ISBN: 0-387-
97133-5: $39.00/trade)

Discloses the purpose of the Ada Generic Library as an attempt to provide
Ada Programmers with an extensive, well-documented library of generic
packages whose use can substantially increase productivity and reliability.
Contains eight Ada packages, with over 170 subprograms for various linear
data structures based on linked lists.

Naiditch, D. (1989). Rendezvous with Ada: a programmer’s introduction. John
Wiley & Sons, New York. 477 pp. (ISBN: 0-471-61654-0; $39,95/paper)

Explains Ada to the beginning programmer (knowledge of at least one high
level programming language is advised). Concludes each chapter with exer-
cises.

Bibilography 43

Nielsen, K. (1992). Object-oriented design with Ada/maximizing reusability for
real-time systems. Bantam Books, New York. (ISBN: 0-553-08955-2)

Shows Ada programmers how to design, implement, and maintain reusable
real-time software systems using the object-oriented methods.

Nielsen, K. and Shumate, K. (1988). Designing large realtime systems with
Ada. McGraw-Hill, New York. 464 pp. (ISBN: 0-07-046536-3; $58.95/text)

Presents a comprehensive methodology for the design and implementation of
large realtime systems in Ada. (The reader is expected to have a basic under-
standing of the Ada programming language.)

Nielsen, K. (1990). Ada in distributed realtime systems. McGraw-Hill, New
York. 371 pp. (ISBN: 0-07-046544-4; $58.95/text)

Emphasizes design paradigms and heuristics for the practicing software
engineer. Provides important background material for the builder of operat-
ing systems and runtime support environments for distributed systems. Con-
tains data on distributed systems, process abstraction and Ada for distributed
realtime systems, design paradigms for distributed systems, inter-processor
communication, virtual and physical nodes, and fault tolerance.

Nissen, J. and Wallis, P. (1984). Portability and style in Ada. Ada Companion
Series, Cambridge University Press, Cambridge. 202 pp. (out of print)

Examines style and portability guidelines for Ada programmers. Results of
work by the Ada-Europe Portability Working Group.

Nyberg, K. A. (1991). Ada: sources & resources. Grebyn Corporation, Vienna,
Virginia. P. O. Box 497 Vienna, VA. Telephone: 703/281-2194

Nyberg, K. A.,ed. (1991). Annotated Ada reference manual. Grebyn Corpora-
tion, Vienna, Virginia. P. O. Box 497 Vienna, VA, Telephone: 703/281-2194

Contains the full text of ANSI/MIL-STD-1815A with inline annotations
derived from the Ada Rapporteur Group of the International Organization for
Standards responsible for maintaining the Ada language. -

Olsen, E. W. and Whitehill, S.B. (1983.). Ada for programmers. Prentice-Hall,
Englewood Cliffs, New Jersey. 310 pp. (ISBN: 0-8359-0149-1; $38.00)

Includes many of the subtleties of Ada in a self-paced tutorial format. Con-
tains the following: conceptual overview; predefined types; expressions;
basic Ada statements, subprograms; packages; etc.

Orme, A, etal. (1992). Reusable Ada components sourcebook. Cambridge
University Press, Cambridge. 286 pp. (ISBN: 0 521 40351 0; $49.95)

The authors consider how the Ada software components that may be found in
this book could be used. According to the publishers both the novice and the
expert software engineer will find useful information in this book.

Blbiiography

Pokrass, D. and Bray, G. (1985). Understanding Ada: a software engineering
approach. Johrt Wiley & Sons, New York. (ISBN: 0-471-87833-2;
$32.95/paper)

Price, D. (1984). Introduction to Ada. Prentice-Hall, Englewood Cliffs, New
Jersey. 150 pp. (ISBN:0-13-477646-1; $26.95/trade)

Presents examples, programs, and program fragments showing Ada’s power

as a general purpose language, plus step-by-step explanations demonstrating
how Ada simplifies the production of large programs. Requires little techni-
cal or mathematical sophistication.

Pyle, 1. C. (1985). The Ada programming language. Prentice-Hall, Englewood
Cliffs, New Jersey. 345 pp. (ISBN 0-13-003906-3)

Describes the basic features of the Ada programming language. Covers the
issues of program structure, and discusses machine specific issues. Assumes
prior knowledge of programming. Introduces topics in the context of embed-
ded systems. Covers the following areas: the basic features of Ada, the par-
ticular programming concepts in Ada that will probably be new to most pro-
grammers; the issues of program structure; the machine-specific issues that
can be expressed in a machine-independent language and advanced treat-
ment.

. (1991). Developing safety critical systems with Ada. Prentice-
Hall, Englewood Cliffs, New Jersey. (ISBN: 0-13-204298-3; $39.00/paper)

A presentation of concepts for practicing engineers or programmers involved
with the development of safety-related computer-based systems. Considers
the different roles involved in accepting safety related systems and the
corresponding human activities. Illustrates how Ada provides a framework in
which the design rules for safety can be applied and confirmed. The author
explains relationships, with major published guidelines for development of
safety related software. Interprets guidelines specifically for Ada. The
material presented is for three contemporary viewpoints: analyzer, syn-
thesizer, checker. A senior-level course in Ada programming and software
engineering.

Rogers, M. W. (1984). Ada: language, compilers and bibliography. Cambridge
University Press, Cambridge. 332 pp. (ISBN: 0-521-26464-2; $24.95/trade)

Offers a photo reprint of the Ada standard, a guide listing the characteristics
of an implementation that should be taken into account in the specification or
selection of an Ada compiler and a bibliography.

Saib, S. H. and Fritz, R. E. (1985). Introduction to programming in Ada. Holt,
Reinhart and Winston, New York. (ISBN: 0-03-059487-1; $28.95/text)

. (1983). Tutorial: the Ada programming language. IEEE Com-
puter Society. 538 pp. (ISBN: 0-8053-7070-6; $25.56/paper)

Covers such topics as the history and current status of Ada; basic language;

Bibllography 45

schedule for industry and DoD; preventing error; readable mainiainable,
modular systems; real-time features, portability; and environments for Ada.

Savitch, W.], et al. (1992). Ada: an introduction to the art and science of pro-
gramming. Benjamin-Curnmings, Menlo Park, California. (ISBN: 0-8053-
7070-6; $33.95/paper text)

Written specifically for the first programming course. It starts with variable
declarations, simple arithmetic expressions, simplified input-output, and
builds upward toward subprograms and packages. A chapter-by- chapter
instructor’s guide is also available, as is a program disk with more than 140
completed programs from the text.

Saxon, J. A. and Fritz, R. E. (1983). Beginning programming with Ada.
Prentice-Hall, Englewood Cliffs, New Jersey. (out of print)

Shimer, R. (1989). Ada. Amigo Projects. (ISBN: 0-685-30433-7; $12.00/paper
text)

Shumate, K. C. (1987). Understanding concurrency in Ada. McGraw-Hill,
New York. 595 pp. (ISBN: 0-07-057299-2ISBN; $58.95/text)

Presents a detailed exposition of concurrency in Ada. Looks at five case stu-
dies and gives an advanced introduction to real-time programming.

. Understanding Ada. John Wiley & Sons, New York. (ISBN; 0-
471-605-204; $51.00/text)

. (1989). Understanding Ada: with abstract data types. John
Wiley & Sons, New York. (ISBN: 0-471-60347-3; $21.50/text)

Skansholm, J. (1988). Ada from the beginning. Addison-Wesley, Reading,
Massachusetts. 617 pp. (ISBN: 0-201-17522-3; $29.25)

Describes the principles and concepts of programming in a logical and easy-
to-understand sequence and discusses the important features of Ada (except
parallel programming). Teaches the basics of writing computer programs.
Emphasizes the fundainentals of good programming. Provides a grounding in
the programming language Ada. Covers the following: programming
designs, the basics of Ada, control statements, types subprograms, data struc-
tures, packages. input/output, exceptions dynamic data structures, files, and
generic units.

Smedema, C. H., et al. (1983). The programming languages Pascal, Modula,
Chill, Ada. Prentice-Hall, Englewood Cliffs, New Jersey. 154 pp. (ISBN: 0-
685-08596-1; $16.95/trade)

Provides an informal introduction to the most impcertant characteristics of
Pascal, Modula, CHILL, and Ada. Discusses languages in historical order.
Includes the history, application area, standardization aspects and future
prospects of each.

46 Bibliography

Sodhi, J. (1990). Computer systems techniques: devclopment, implementation,
and software maintenance. TPR, Scarsdale, New York. (ISBN: 0-8306-
3376-6) Phone: 800-822-8138

. (1990). Managing Ada projects Using software engineering.
TPR, Scarsdale, New York. 246 pp. (ISBN: 0-8306-0290-9; $34.95/trade)
Phone: 800-822-8138

Describes some of the practical aspects of developing a flawless project in
Ada.

—. (1991). Sofrware engineering: methods, management, and CASE
tools. TPR (a division of McGraw-Hill), New York. (ISBN: 0-8306-3442-8)
hione: 800/822-8138

Software Productivity Consortium. (1989). Ada quality and style: guidelines for
professicnal programmers. Van Nostrand Reinhold, New York. 230 pp.
(ISBN: 0-442-23805-3; $26.95/paper)

Provides a set of specific guidelines for using the powerful features of Ada in
4 disciplined manner. Consists of concise statements of the principles that
should be followed, and the rationale for cach guideline.

Sommerville, I. and Monison, R. (1987). Developirg large software systems
with Ada. International Computer Science Series, Addison-Wesley, Reading,
Massachusetts, (ISBN: 0-201-14227-9; $26.95/paper text)

Stein, D. (1985). Ada: a life and legacy. MIT Press, Cambridge, Massachusetts.
321 pp. (ISBN: 0-262-19242-X; $30.00/Trade) (ISBN: 0-262-69116-7;
$10.95)

Presents the view that Ada Byron's mathematical and scientific achievements
have been exaggerated.

Stratford-Collins, M. J. (1982). Adu: a programmer’s conversion course. Ellis
Horwood Series in Computers & Their Applications, John Wiley & Sons,
New York. (ISBN:0-470-27332-1; $56.95/trade)

Tafvelin, S., ed. (1987). Ada components: libraries and tools. Ada Companion
Series, Cambridge University Press, Cambridge. 288 pp. (ISBN: 0-521-
34636-3; $44.50/trade)

Comprises the proceedings of the international conference organized by Ada
Europe with the support of the Commission of the European Comrnunities
and the collaboration of SIGAda.

Tedd, M., et al. (1984). Ada for multi-microprocessors. Ada Companion Series,
Cambridge University Press, Cambridge. 208 pp. (1ISBN: 0-521-301033,
$4450/trade)

Addresses those problems of distributed systems that arise out of the nature
of Ada and support environments. Discusses the issues of how to construct

Bibliography 47

48

and run an Ada program for a valuable target configuration of several micro-
computers, interconnected through shared memories multi-access busses,
local area networks, and end-to-end lines.

Texel, P. (1986). Introduction to Ada: packages for programmers. Wadsworth
Publishing, Belmont, California. 441 pp. (ISBN: 0-534-06348-9; out of print)

Provides a guide to Ada that contains complete packages, /O facilities and
sample programs, emphasizing top-down design throughout.

Toole, B. A. Ada, the enchantress of numbers: a selection from the letters of
Lord Byron’s daughter and her description of the first computer. Strawberry
Press, New York. (ISBN: 0-912647-09-4; 29.95)

The author states that she selected the letters in such a way to enable the
reader to follow a loose story line of Lady Ada Lovelace’s life. In her letters,
Ada describes her thoughts of the first computer, and Ms. Toole relates these
descriptions to the modem software language, Ada.

Tremblay, I., et al. (1990). Programming in Ada. McGraw-Hill, New York.
489 pp. (ISBN: 0-07-065180-9; $24.60/paper text)

Explains computer science concepts in an algorithmic framework, with a
strong emphasis on problem solving and solution development.

Uhl, J. (1982). An attribute grainmar for the semantic analysis of Ada. Lecture
Notes in Computer Science Series, 139, Springer-Verlag, Berlin. (out of
print)

Unger, B. (1984). Simulation software & Ada, SCS Simulation Series. (ISBN:
0-911801-03-0; $16.00/paper)

U.S. Department of Defense. (1983). The programming language Ada: a refer-
ence manual: proposed standard document. Lecture Notes in Computer Sci-
ences, 106, Springer-Verlag, Berlin. (ISBN: 0-387-10693-6; $19.00/paper)

Vasilescu, E. N. (1987). Ada programming with applications. Allyn and Bacon,
Newton, California. 539 pp. (out of print)

Offers a bottom-up approach to commercial and business uses of Ada
ernphasizing the features of Ada that are most like those of traditional
languages.

Vasilescu, E. M. (1986). Ada programming. Allyn and Bacon, Newton, Califor-
nia. (out of print)

Volper, D. and Katz, M. D. (1990). Introduction to programming Using Ada.
Prentice-Hall, Englewood Cliffs, New Jersey. 650 pp. (ISBN: 0-13-493529-
2; $30.00)

Uses the spiral approach as the presentation methodology in this introductory
course in Ada programming.

Bibliography

Wallace, R. H. (1986). Practitioner’s guide to Ada. McGraw-Hill, New York.
373 pp. (ISBN: 0-07-067922-3; $39.95)

Discusses the issues to be considered when making the transition to Ada on
selecting toolsets, and on using the language effectively. Covers the follow-
ing: Ada as a language; Ada Oriented Development Environments; Ada
oriented design methodologies; Ada policies and standards; Ada products and
vendors; sources of Ada-related information; making the transition to Ada
and other uses of Ada.

Wallach, Y. (1990). Parallel processing & Ada. Prentice-Hall, Englewood
Cliffs, New Jersey. (ISBN: 0-13-650789-1; $54.00/casebound)

Wallis, P. J. (1986). Ada: managing the transition. Ada Companion Series,
Cambridge University Press, Cambridge. (JISBN: 0-521-33091-2;
$44.50/trade)

Wallis, P. J., ed. Ada software tools interfaces, Lecture Notes in Computer Sci-
ence Series, 180. (ISBN: 0-387-13878-1; $16.00/paper)

Watt, D. A., et al. (1987). Ada language and methodology. Prentice-Hall,
Englewood Cliffs, New Jersey. 515 pp. (ISBN: 0-13-004078-9;
$37.00/paper)

Covers the Ada language in detail and introduces program methodologies
appropriate for use with Ada. Discusses the following topics: 1) covers a
subset of Ada broadly comparable with most other programnming languages:
2) introduces the features of Ada that make it suitable for the construction of
large programs; 3' >mpletes the treatment of the data types of Ada; 4) con-
cludes the trr "=~ of program structures.

Wegner, i (i - £, amming with Ada: an introduction by means of gra-
duated e;:rmp! < tentice-Hall, Englewood Cliffs, New Jersey. (out of
prin.:

Wiener, R. $. ard Sincovec, R. F. (1983). Programming in Ada. John Wiley &
Sons, New York. 345 pp. (out of print

Describes the major features of the Ada programming language covering
basic control and data structures associated with Ada, and powerful advanced
features that differentiate it from previous programming languages.

. (1984). Software engineering with Modula-2 & Ada. John
Wiley & Sons, New York. (ISBN: 0-471-89014-6; $51.95/text)

Winters, J. (1987). Power programming with Ada for the IBM PC. TAB Books,
Blue Ridge Summit, Pennsylvania. 207 pp. (ISBN: 0-830.:-2902-5;
$16.95/paper) (ISBN 0-8306-7902-2; $24.95/trade)

Analyses programs in Ada for personal computers. Written for the beginning
Ada programmer in a style very easy tec read and fellow.

Blbliography

49

Young, S.J. (1983). An intrnduction to Ada. John Wiley and Sons, New York.
400 pp. (out of print)

Introduces the programming language and explains the underlying program
design methodology, illustrated with examples.

Bibliography

Appendix A
DoD Directive 3405.1

This appendix contains the text of DoD Directive 3405.1 issued on April 2,
1987 which specifies computer programming language policy for the DoD.

Appendix A DoD Diractive 3405, 1 A1

Department of Defense
DIRECTIVE

April 2, 1987
NUMBER 3405.1

ASD(C;
SUBJECT: Computer Programming Language FPolicy

Refersnces: (a) DoD Instruction 5000.31, “Interim List of DoD Approved Higher

Order Programming Languages (HOL)," November 24,1976
(hexeby canceled)

(b) DoD Directive 7740.1, *"DoD Information Resources Management
Program,® June 20, 1983

(c) DoD Directive 5000.1, "Major System Acquisiticns,” March 12,
1986

(4) DoD Directive 5000.29, *"Management of Computer Fesources in
Major Defense Systems,* April 26, 1976
(o) through (j), see enclosure 1

A. PURPOSE

This Directive supersedes reference (a) and supports references (b) and
(c) by aestablishing policy for computer programming languages used for the
development and support of all DoD software.

B. APPLICABILITY AND SCOPE
This Directive:

1. Applies to the Office of the Secretary of Defense (0SD), the Military
Departments (including the Naticnal Guard and Reserve), the Organization of
the Joint Chiefs of Staff (0JCS), the Unified and Specified Commands, the
Inspector General of the Departmont of Defense (IG, DcD), the Defense
Agencies, and nonappropriatad fund activities (hereafter referred to
collectively as "DoD Components”™).

2. Covers all computer rescurces nmanaged under reference (d) or DoD
Directive 7920.1 (reference (e)).

3. Need not be applied retroactively to systems that have entered
full-scale development or have passed Milestone II of references (c) and (e),
and for which a documeanted language commitment was made in compliance with
previcus policy.

C. DEFINITIONS

Special terms used in this Directive ure explained in enclosure 2;
otherwisa, refer to the "American National Dictionary for Information
Processing Systems” (referxrence (f)).

D. POLICY
It is DoD policy to:
1. Satisfy functional requirements, enhance mission performancas, and

provide operational support through the use of modern software conceptas,

A2 Appendix A DoD Diractive 3405.1

advanced software technology, software life-cycle support tools, and standard
programming languages.

2. Achisve improvements in DoD software management through the
implementation of processes for control of the use of higher order languages,
inocluding specification of standards and waiver procedures.

3. Limit the numbar of programming languages used within the Dspartment
of Defensa to facilitate achievement of the goal of transition to the use of
Ada* (reference (g)) for DoD software development.

a. The Ada programming language shall be the single, common, computer
programuing language f£c.° Defense computer resources used in intelligesnce
systems, for the command and control of military forces, or as an integral part
of a weapon system. Programming languages other than Ada that were authorized
and being used in full-scale development muy continue to ba used through
deployment and for goftwale maintenance, but not for major scftware upgrades.

b, Ads shall be used for all other applications, except when the use
of ancther approved higher order language is more cost-effactive over the
application’s life-cycle, in keeping with the long-range goal of establishing
Ada as the priwary DoD higher order language (HOL).

C. When Ada is not used, only the other standard higher order pro-
gramming languages shown in enclosure 3 shall be usad to mest custom-developed
procedural language programming xequirements. The use of spocific HOL’s shall
be based on capabilities of the languige to mest systenm requirements. Guidance
in selscting the appropriate HOL to use is provided in KBS Speaial Publication
500-117 (refexrence (h)).

4. Profer, based on an analysis of the life-oycle costs and impact, use
of:

a. Off-the-shelf application packages and advanced software technology.
b. Ada-based woftware and tools.
€. Approved standard HOL's.

5. Consider the potential impact on campetition for future software
and/ox hardware asnhancaments or replaceament when selscting Defense, public
, domain, or commerciaily svailable software packages, or advanced software

technology.

6. Use life-cyclyv ranagement psractices, as required by DoD Directive
7920.1 (reference (e)) and DoD Directive 5000.29 (reference (d)), for the
developmant, suppost, and use of software, whether custom-developed or
commercially acguired.

7. Reduce software obsclescence and the cost of software maintenance
through use of approved programaing languages and appropriate advanced
scftware technology during all phames of the msoftware life-oycle.

E, RESPONSIBILITIES

1. The Assistant Secretary of Defsnse (Comptroller) (AYD(C)) and the
Under Secretary of Defense (Acquisition) (USD(A)) shall jointly:

Appandix A DoD Directive 3405.1 A3

a. Ensure that the policy and proceduras in this Directive are
implenented.

b. Assign responsibility to a specific DoD Component to act as the DoD
language-~contzcl agent for each DoD-approved standard HOL.

c. Process nominations for changes to the list of approved HOL's.
2. The Assistant Secretary of Defense (Comptroller) shall:

a, Yor automated information systems, eatablish programs, as
appropriate, for the enhancement of the software engineoring process and the
transition of such tachnology from the marketplace and research programs to
application within general purposs automated data processing systems.

b. Uesfine research and development reguiremsnts for automated
information systems after consultation with DoD Components and provide such
requirements to USD(A) for inclusion in their research and development program.

3. The Under Secretary of Defense (Acquisition) shall:

a. Establish and support a scftware and information technology
research and development program that is responsive to the identified needs.

b. Manage the DoD Ada program and maintain and Ada Joint Program
Office (AJPO) to oversee the maintenance of the Ada language and the
insertion of Ada-related technology into the Department of Defense.

C. Establish research programs, as appropriate, for the enhancement
of softwars engineering technology and transferring such technology to use in
intelligenc systems and systems for the command and control of military
forces, and to computer resources that are an integral part of a weapon system.

4. The Head of Each DoD Component shall:

a. Implement and execute internal procedures consistent with the
policy and procedures in this Directive.

b. Designate a language-control agent for each approved HOL for which
the DoD Component is assigned responsibility and ensure compliance with the
procedures in enclosure 4.

c. Institute a process for granting waivers to the use of approved
HOL’s in accordance with section F., below.

d. Specifically address in the Componant’s overall computer rescurcaes
plauning process:

(1) The use of appropriste advanced software technology for
developing new applications and technological upgrades of existing systems.

(2) The current use of assembly languages, nonstandard HOL'a,
vendor extensions, and enhancements of standard HOL’s, and actions taken to
ensure that such use is minimized.

e. Establish a program for evaluating, prototyping, and inserting

advanced software technology into the development, nodification, and
maintenance process, and hold operational software managexs accountable for

A4 Appsendix A DoD Directive 3405.1

investment in and migration to advanced software technology for theix
particular environment.

£. Establish and maintain training, education, and caresr development
programs that will ensure that DoD perscnnel are fully able to use new
advanced software technologias.

F. WAIVER PROCEDURES

1. waivers to the policy in subsection D.3., above, shall be strictly
controlled and closely reviewed. Authority for issuing waivers is delagated
to sach (oD Cnmponent.

a. Each proposed waiver shall contain full justification and shall,
at a minimum, include a life-cycle cost analysis and a risk analysis that
addresses technical performance and schedule impact. Each waiver granted by
the DoD Component shall apply to only one system or subsystem.

b. Justification for granted waivers shall be provided tc USD(A) orx
ASD(C) within the scope of their individusl responsibilities, as periodically
reguested for review.

2. A waiver NEED NOT be obtained for use of:

a. Commevcially available off-the-shelf applications software that is
not modified or maintained by the Department of Defense.

b. Coumercially available off-the-shelf advanced scftware technology
that is not modified or maintained by the Department of Defense.

¢. Computer programming languages required to implement
vendor-provided updates to commercially supplied off-the-shelf software. Use
of such languages shall be restricted to implementing the vendor updates.

3. A wailver IS REQUIRED for use of unmodified Defenss or public domain
software that does not conform to the language regquirements of subsection
D.3., above. MNaintenance of the scftware shall be specifically addressed in
the waiver request to include life-cycle maintenance costs and the
availabillity of source codes and necessary software toolas.

G. EFFECTIVE DATE AND IMPLEMENTATION

This Directive is effective immediately. Forward one copy of implementing
documents to the Assistant Secretary of Defenss (Comptroller) and one copy to
the Under Secretary of Defense (Acquisition}) within 120 days.

William H. Taft, IV
Deputy Secretary of Defense

Encleoaures - 4
1. Refersnces
2. Special Terms and Definitions
3. DoD-~Approved Higher Order Programming Languages
4. Procedures for Controlling Higher Order Languages (HOL)

Appeudix A DoD Directive 3405.1 A5

*Ada is a Registered Trademark of the U.S. Government (Ada Joint Program
Office).
A6 Appendix A DoD Directive 3405.1

REFERENCES, continued

{(e) DoD Directive 7320.1, "Life Cycle Management of Automated Information
Systems (AIS)," October 17, 1978

(£) National Bureau of Standards (NBS) FIPS Publication 11-2, "American
National Dictionary for Information Processing Systems,* May 9, 1983

(g) ANSI/MIL-STD-1815A-1983, "Ada Programming Language," February 1983

(h}) National Bureau of Standards Special Publication 500-117, "Salection and
Use of General Purpose Programming Languages," October 1984

(1) DoD 4120.3-M, "Defense Standardization and Specification Program Policies
Procedures and Instructions, " August 1978, authorized by DoD Directive
4120.3, Fabruary 10, 1979

(3J) DoD Directive 5010.19, "Configura*ion Management," May 1, 1979

Appendix A DoD Drective 3405.1 A7

SPECIAL TERMS AND DEFINITIONS

1. Advanced Scoftware Technology. Scftware tools, life-cvcle support environ-
nents (including program support environments), nonprocedural languages,
modern data base management systems, and other technologies that provide
improvenents in productivity, usability, maintainability, portability, etc.,
over those capabllities commonly in use.

2, Automated Informatlon Systems. A collection of functional user and
automatic data processing personnel, procedures, and egquipment (including
automatic data processing equipment (ADPE)) that is domigned, built, oparated,
and maintained to «ollect, record, Drocess, atore, rartriave, and display
information.

3. Major Software Upgrade. Redesign or addition of more than one-third of
the software.

Appendix A DoD Diractive 3405.1

DoD~Approved Higher Order Programming Languages

| | Industry |
| Language | Standard Number | DoD Control Agent| Control |
l I | | Agent |
I
l

| Ada | ANSI/MIL-STD-1815A-1983
| | (FIRS 119)

| coBoL | ANSI X3.23-1585 (FIPS 21-2) | Air Foxce | ansz |

- T S S o O B e P N e el e M i ot e N e TR OB B RS e Ee e e e e o S e G G e e e Sm e e

| cws-2m | NAVSEA 0967LP-598-2210-1982 | Navy | N/A |

| ems-2v | RAVSEA Manual M-5045, M-5045| Navy | N/A |
| | #-5044-1981 | | |
| TORTRAN | ANSI X3.9-1978 (FIPS ¢9-1) | Adir Foxco | amsI !

JOVIAL (J73)	MIL-STD-1589C (USAF)	Adr Foxce	N/A
Minimal	ANSI X3.60-1978 (¥IPS 68-1)	Air Forca	ansI
BasIC I	I		

- = S e G o e R e e e S e e e e

| PASCAL | ANSI/IEEE 770X3,97-1983 | adir rorce | awsz |
| | (rIps 109) | |]

| sPL/1 | $9°L/1 Language Reference | Navy | N/A |

| | Manual, Intermetrics Report | l l
| | No. 172-1 | | I

Appendix A DoD Directive 3405.1 A9

PROCEDURES FOR CONTROLLING HIGHER ORDER LANGUAGES (HOL)

1. All Ada compilers that are used for creation of softwars to be
delivered to or maintained by the Government shall be formally validated in
accordance with procedures and guidelines sst by the AJPO.

2. Each DoD-approved HOL shall bs assigned to a DoD language-~control
agent, as shown in enclosure 3, who shall:

a. Have ths authority and responsibility for proper support of all
language-control activities needed to provide for necessary modification and
improvement of the assigned HOL. The agent shall operate in accordance with
DoD 4120.3-M (reference (i)).

b. Provide configuration control for DoD KOL’‘s in accordance with
Dol Directive 5010.19 (reference (j)). For HOL’s controlied under industry
(e.g., Institute for Electrical and Electronic Enginesrs or American National
Standards Institute) procedures, the agent shall represent the Department of
Defanse toc the controlling body.

c. Maintain a single standard definition of the assigned HOL and make
thisw definition document available as a Fedaeral, DoD, military, or adopted
industry standard. The agent shall also gather and digseminate appropriate
information regarding use of the HOL, its compilers, interpreters, and
assoclated tools.

3. A DoD Component nmay nominate a langusge for ramoval from the list
of approved languages by submitting a justification document, which presents
the rationale for the proposed deidtion and an impact analysis, to the
A8BD(C), who will coordinate it with USD(A).

4. A DoD Component nay also noninate & language for inclusion on the
list of approved languages by submitting a justification document to the
ASD(C), whe will coorxdinate it with USD(A). The justification document
shall include the following:

a. A detailed rationale for using the language, including how the
candidate language mests specific DoD requirements that are not satisfied by
the approved languages.

b. A description of the language and the environmant and a detailsd
unambiguous specification of the language.

c. An economic analysis of the impact of the language over its
expected life-cycle.

d. A detailed plan for implementing and supporting the language,

including identification of the DoD Component that will accept designation as
control agent for the language.

A10 Appendix A DoD Directive 3405.1

Appendix B
HQDA LTR 25-90-1

This appendix contains the text of HQDA LTR 25-90-1 issued on , . July
1990 which provides guidance on implementing use of the Ada programming
language with the Department of the Army.

Appendix B HQDA LTR 25-90-1 B1

DEPARTMENT OF THE ARMY
WASHINGTON, D.C. 20310

*HQDA LTR 25-50-1
*Thig letter supersedes HQDA Letter 25-88-5, 21 June 1588.

SAIS-ADO (14 May 1980) 16 July 1990
Expires 16 July 1992

SUBJECT: Implamentation of the Ada Programming Language

SEE DISTRIBUTION

1. Purpose. This letter amplifies Army policy and guidelines
for implementing the Ad programming language as reguired by DOD
Directives 3402.1 and 3405.2

2. References. Related publications are listed below.

a. DOD Directive 3405.1, 2 April 1587, Computer Programming
Language Policy.

b. DOD Directive 3405.2, 30 March 1987, Use of Ada in Weapon
Systems.

¢, ANSI/MIL-STD-1815A-1983, Ada Programming Language,
22 January 1983.

d. HQDA message, 031309Z August 1987, SQL Relational Data
Bagse Language Standard.

3. Explanation of abbreviations. Abbreviations used in this
lstter are explained in the glossary.

4. Applicability and scope. This letter applies to all computex
resources used to develop, modify, maintain, or support Army
software. These resourcex include but are not limited to
automated information systems, intelligence systems, tactical
systems, and weapon systems that have information resources such
as computers as part of, or embedded in, the host systam. They
also include but are not limited to systems developed by or for
major commands, program executive officers/program managers,
central design activities, combat development facilities, and
laboratories. Except in instances noted in paragraph 6a, this
pelicy needs not ba applied retroactively to systems that have
enterud full-scale development or deployment phases of the life
cycle, or for which a waiver has been approved by Headguarters,
Department of the Arnw (HQDA).

5. Responsibilitias
a. The Director c¢f Information Systems for Command, Ccntrol,

Appendix B HQDA LTR 25-90-1

Conmunications, and Computers (DISC4) wiil--

(1) Act as the Arnmy Ada Executive Official and serve as
the Army focal point for all Ada program activities. The DISCd
will review and approve all requests for exceptions or waivers

(2) Develop and execute the policy and plans necessary to
snsure successful Army-wide transition to, and implementation of,
the Ada language and its associated technology, including
processes for software engineering and software engineering
project management.

b. Major Army command (MACOM) commanders and/or program
executive cfficers (PE0Os) will--

(1) Develop appropriate policy to support an Ada
implementation plan.

(2) Duvelop, submit, maintain, and sxecute an Ada
implementation plan in the format shown in Appendix A. The
implementation plan will be in two parts (systems and
organizational) and will ba submitted/updsated on an annual basis.
The systems portion will addrass all major systems (such as
misgion critical computer resources (MCCR), Standard Army
Management Information System (STAMIS), command standard, comxmand
unigque, and multi-user/location) and those systems that provide
input to or receive ovutput from these systems. This portion will
algo include a schedule for transition to Ada, as appropriate.
The organizational mortion will address planning, training, and
support available for migrating ~~ Ada technology.

(3) Maintain, as a PEO, an Ada implementation plan for
those systeams under their purview and ensure that assigned
program/project/product managers (PMs) implement Ada in
accordance with Army policy.

(4) Ensure that software designers/developers are fully
trained in the use of the Ada language, technology, and software
engineering processes, with particular emphasis on developing
components that are tested, wvalidated, and documented for
inclusion in reuse libraries.

(5) Ensure that military and government civilian personnel
in all software skill groups are aware of new advanced goftware
technologies for possible implsmentation.

(6) Develop procedures and guidelines that address good
software engineering principles that, as 2 minimum, address
software reuse, portability, and management controls.

c. Heads of HQDA activities will develop, maintain, and
submit implementation plans to the Department of the Army
Information Manager (DAIM) for execution. The HQDA staff

Appendix B HQDA LTR 25-90-1 B3

agencies and their field operating agencies (FOAs) are considered
collectively as a MACOM for execution of this letter.

6. Policy.

a. The Ada programming language as defined in ANSI/MIL-STD-
1815A-1983 is the single, common, high order computer programming
language for all computer resources used in the Axmy unless
another language is mandated by a higher level directive.
Approvals to use another apprroved standard high order language
(HOL), =s defined in DOD Directive 3405.1, will only be granted
when the use of the other lunguage is estimated/calculated to be
more cost effective or more operationally effsctive over the
applications’ life cycle. Programming languages other than Ada
that were authorized and are beiny used in full-gcale development
of these systems may continue to be used through deployment and
for softwars maintensnce. In those specific instances where Army
systems must interface with non-Department of Defense (DOD)
agencies, such as the Central Intelligence Agency (CIA) and
Federal Bureau of Investigation (FBI), Ada is preferred but not
required. Existing software need not be rewritten in Ada solely
for the purposs of converting to Ada. All systems, however, will
transition to Ada when the next hardware/software upgrade
requires modification of more than one-third of the existing
code over the system life oycle, unless a waiver is obtained.

b. All regquests for exceptions to use ancther approved HOL
will have fully documentsd rationale. The regquests will address
technical feasibility and life-cycle cost analysis or cite the
applicable higher level directive.

¢. When software components for Army systems are being
acquired and/or developed, good software engineering principles
will be exercised to facilitate the use of Ada. The approach to
acqui.ring and/or developing software components will be based on
an analysis of life-cycle costs and operational efficiency.
Major considerations should be:

(1) 'The use or modification of existing Ada software.

(2) The use of off-the~-shelf software and advanced
software technology, implemented in other than Ada, for which no
modification or Government maintenance is regquired. Advanced
software technology includes software tools, life-cycle support

. snvi. mments, nonprocedural languages, and modern databasa

5 management systems (DBRMSg) that provide improvements in

' productivity, usability, maintainability, and portability. A
waiver is not regquired for non-developmental item (NDI) software
application packages and advanced software technology that are

) not modified by or for DOD. In those instances where existing
ﬂl;‘ software requires modification to snsure the total system meets
i requirements, a waiver is required if more than one-third of the
source code is being changed and the changes are not written in

B4 Appendix B HQDA LTR 25-90-1

Ada.

(a) Regarding the use of fourth generation languages
(4GLs), the following apply:

1 The approved ad hoc gquery and Databage
Management System interface language for Army systems is the
Structured Query Language (SQL), Federal Information Processing
S8tandard (FIPS) 127. In accordance with HQDAR message, 03130SZ
August 1987, 8QL will be used for relational databases as the
interface between programs and the supporting DBMS. A waiver is
not reqguired for any system using &n SQL-compliant DBMS in
conjunction with Ada.

2 Non-SQL-compliant 4GLs may be used without the
requirement for a waivar to develop prototypes during
requirements definition and in short term/ad hoc applications
(less than 3 years’ useful life). In no case will a non-Ada
prototype be fielded Aduring system implementation nor will an ad
hoc appllication exceed the time limitation without an approved
Ada waiver.

(b) With the exception noted in gubparagraph 2, above,
4GLs will not replace the regquirement for, or the use of , Ada.

(3) The development of new Ada software. If source code
generators are used in the development of Ada softwarae, they must
produce an Ada source code that complies with ANSI/MIL-STD-1815A-
1983.

(4) The impact on certain critical processes that
currently cannot be performed efficiently in an HOL dAue to timing
and/or sizing constraints. These functions, requiring very fast
or tightly controlled computer processing, are more appropriately
written at the machine level (for example, micro-code/assembly
language). In such instances, & waiver is not regquired if the
ration of non~Ada source code to Ada sourcses code (terminal
semicolon count) doesr not exceed 15 percent. An Ada waiver is
required if the total machine leval code exceeds 10,000 lines.

(5) The regquirement that projects use a validated Ada
conpiler, as defined by the Ada Joint Program Office (AJPO) Ada
Compiler Validation Procedures, at the start of formal testing.
Providing no changes are made to the compiler, it may be used for
the balance of the project’s life cycle even though its
associated validation certificate may have expired. If the
conpiler is altered, then a validation is necessary.

d. If system requiremsnts cannot be satisfied by paragraph
6¢, then a waiver approval is required from HQDA, DISCd
(SAIS-ADO) to:

(1) Devalop Army software in another computer language.

Appendix B HQDA LTR 25-90-1 B5

B6

(2) Acquire off-the-shelf software, implemented in othex
than Ada, which requires Government maintenance or modification
of more than one-third of the total system software.

{(3) Implement a system/subsystem in a 4GL.

{(4) Develop an Army system, with severe time and/or size
constraints, in which the machine level to Ada source code ratio
exceeds 15 percent or the total machine language code exceeds
10,000 lines. <

6. In all instances, however, anyons requesting a waiver nust
demonstrate that the software strategy is more cost-effective or
more operationally effective ovaer the system life and must
include a statement of maintainability from the responsible
software maintainer.

7. Waivers

a. with the exception noted in paragraph 6c, a waiver must be
obtained to develop any non-Ada software.

b. Justification must address the following issues:

(1) The waiver reguest will provide adequate technical
description to address limitations, documentation, portability,
maintainability, and usability of the proposed software language
or puckage.

(2) The waiver reguest will provide complete life-cycle
sconomic rationale for both Ada and the requested language. For
tactical systems, intelligence systems, and embedded weapon
systems, the waiver request must also include a risk analysis
that addresses technical performance and schedule impact.

c. A waiver regquest for all new initiatives mugt be approved
prior to Milestone I approval. Prototypes may use advanced
software technology (wuch as 4GLs) in accordance with paragraph
6c(2). However, sunk costs for a non-Ada prototype will not be
considered justification for a waiver.

d. An existing system undergoing modification, as defined in
paragraph 6a, must have received a waiver prior to system
redevelopment regardless of the cost.

a. The long-term costs of supporting programmars,
environments, and software ccde for diverse languages will be

cleocsely scrutinized when waivers are considerad.

£f. Waivers will apply only to the specified zystem or
subsystem identified.

g. Walver processing procedures are zs follows:

Appendix B HQDA LTR 25-20-1

(1) when there iz a PEO/PM structure in place the waiver
reaquest will be submitted from the PM through the PEOC (and MACOM
if appropriate) to the DISC4 (BAIS-~-ADO). All reguests will have
a statement of maintainability £rom the applicable Life Cycle
software Enginesring Center (LCSEC), Software Development Center
(8DC), or Government software engineering organization that will
be responsible for maintenance of the system.

(2) When there is no PEO/PM structure in place, the waiver
request will be submitted through the cognizant software support
center through the MACOM to the DISCA.

(3) waivers may be denisd at any level but can only ba
approved by the DISCA.

8 Effective date and implementation. This directive is
aeffective immediately. NACOM Deputy Chiefs of Staff for
Information Management (DCSIMs) and PEOs will forward a copy of
their consolidated initial/updated Ada implementation plans
{(appendix A) to HQDA (SAIS-ADO) Washington, DC 20310-0107 by

1 October 1990. Updates to tha Ada Implementation Plan are due
on 1 October annua.ily.

Appendix B HQDA LTR 25-90-1 B7

Appendix A
Ada Systems Implementation Plan

1. MACOM/Installation
2. POC Name/Telephone
3. System Name and Acronym
4. Current Life Cycle Management Phase
5. B8ystem Fielding Date
6. ADP Hardware Used
7. Computer Operating System
8. Software Languages Used by Subsystem(s) Including Support
Software
a. Name
b. Lines of Code
¢. Paercent of System
9. Database Managemont System (DBMS) Used
10. DBMS Interface Technigque
1l1. Program Design Language/Implementation Language
12. Project Approval Documentation (Computer Resources Management
Plan (CRMP), Acquisition Plang, and so on, with status)
13. Date Waiver Approved (if applicable)
14. Ada Transition DAtes (start and finish)
15. Planned Upgrade Date(s) (for eithser hardware or software)
16. Maintenance Responsibility
17. System Documentation Standard Used
18. Transition to Ada (narrative explanation)

Ada Organizational Implementation Plan

1. Humaa Resources
a Education and Training of Incumbent Management
and Technical Personnal
b. Accession/Recruitment of Qualified Ada Personnel
c. Ada Support Contractorxr
2. Resources
a. Financial
b. Technical Status
(1) Ada sSupport Environment (including interface
DOD Standard 1838)

(2) Interface to Operational Environment
(a) DBRMS
(b) Operating System
(c) Graphics Support

Glossary

Abbreviations

ADP -vecmceccccea- automatic data processing
AJPO -~-rmm--eeee- Ada Joint Proyram Office

Appendix B HQDA LTR 25-90-1

ANSI ----=m=m==n-

DISCY ---emrmee=-

FBI -=--=m--me- -

4GL ~ewermcceme—-

FIPS wwermecccmme—-

American National Standards Institute
Central Intelligence Agency

Computer Resources Management Plan
Department of the Army Information Manager
Database Managemant System

Deputy Chief of Staff for Information
Management

Director of Information Systems for Command
Control, Communications, and Computers

Department of Defense

Federal Bureau of Investigation
fourth-generation language

Federal Information Processing Standards
field operating agency

high order language

Headquarters, Department of the Army
Life Cycle Software Ingineering Center
major Army command

miggion critical computar resources
non-developmental item

program executive officer
program/project/product manager

point of contact

Software Development Centar
structured gquery language

Standard Army Management Information Syatem

BY ORDER OF THE SECRETARY OF THE ARMY:

Appendix B HQDA LTR 25-80-1

B9

MILTON E. HAMILTON
Administrative Assistant to the
Secretary of the Army

DISTRIBUTION:

HQDA (DACS-ZA)
HQDA (SAFN)
HQDA (SARD)
HQDA (SAAA)
HQDA (SAIS-ZA)
HQDA (SAXG-ZA)
HQDA (DAMI-ZA)
HQDA (DALO-ZA)
HQDA (DAMO-ZA)
HQDA (DAPE-ZA)
HQDA (DAEN-ZA)
HQDA (DASG-ZA)
HQDA (NGB-ZA)
HQODA (DAAR-ZA)
HQDA (DAJA-ZA)
HQDA (DACH-ZA)

COMNMANDER-IN-CHIEF
U.8. ARMY, EUROPE AND SEVENTH ARMY
COMMANDERS
EIGHTH U.S. ARMY
FORCES COMMAND
U.8. ARMY MATERIEL COMMAND
U.8. ARMY TRAINING AND DOCTRINE COMMAND
U.8. ARMY INFORMATION SYSTEMS COMMAND
U.8. ARMY JADPAN
U.S. ARMY WESTERN COMMAND
MILITARY TRAFFIC MANAGEMENT COMMAND
U.8. ARMY CRIMINAL INVESTIGATION COMMAND
U.8. ARMY HEALTH SERVICES COMMAND
U.8. ARMY SOUTE
SUPERINTENDENT, U.S. MILITARY ACADEMY

CF:

HQDA (SASA)

HQDA (SAUS)

HQDA (SACW)

HQDA (SAIL)

HQDA (SAMR)

HQDA (SAGC)

HQDA (SAAG-ZA)

HQDA (SALL)

HQDA (SAPA)

HQDA (SADBU)

COMMANDERS
U.8. ARMY MILITARY DISTRICT OF WASHINGTON
U.8. ARMY RECRUITING COMMAND

Bi10 Appendix B HQDA LTR 25-90-1

—I

DIRECTOR, DEFENSE LOGISTICS AGENCY
PROGRAM EXECUTIVE OFFICERS
COMMUNICATIONS
STANDARD ARMY MANAGEMENT INFORMATION SYSTEM
COMMAND AND CONTROL SYSTEMS
STRATEGIC INFORMATION SYSTEMS
ARMAMENTS
CHEMICAL/NUCLERR
ARMORED SYSTEMS MODERNIZATION
AVIATION
COMBAT SUPPORT
FIRE SUPPORT
AIR DEFENSE
INTELLIGENCE AND ELECTRONIC WARFARE
STRATEGIC DEFENSE

% ST TP 2 S

ER

5

SFT)

v

Appendix B HQDA LTR 25-90-1 B11

Appendix 8 HQDA LTR 25-90-1

Appendix C
The Congressional Ada
Mandate!

This mandate was first included in the fiscal year 1991 appropriations bill
(H.R. 5803) for the Department of Defense. That bill was signed by the
President on November 5, 1990, and became Public Law 101-511. In the FY
1991 act, the section number and wording were:

Sec. 8092. Notwithstanding any other provisions of law, after June
1, 1991, where cost effective, all Department of Defense software
shall be written in the programming language Ada, in the absence
of special exemption by an official designated by the Secretary of
Defense.

Similar wordirg was also included in the FY 1992 appropriations bill, Public
Law 102-172, enacted November 26, 1991. There, the mandate can be found in
Section 8073. The FY 1991 appropriations bill originated in the House as H.R.
5803. In the version reported out of the House and sent to the Senate, this sec-
tion (originally numbered Sec. 8084) had not contained the proviso "where cost
effective”; as amended by the Senate, the mandate was deleted entirely; when
House and Senate conferees met to reconcile differences in the two versions,
they restored the mandate with the "where cost effective” proviso. With this pro-
viso, the mandate was then a part of the final version of the appropriations bill
passed by both houses and signed by the President. The following appeared in
House Report 101-822, which accompanied the original House-passed version of
H.R. 5803.

: Copyright 1992. IIT Research Institute. All rights assigned to the U.S. Government (Ada Joint
Program Office). Permission o reprint this fiyer, in whole or in part, is granted. provided the
AdalC is acknowledged as the source. If this flyer is reprinted as part of a published document,
please send a courtesy copy of the publication to AdalC, c/o IIT Research Institute, 4600 Forbes
Boulevard, Lanham, MD 20706-4320. The AdalC is sponsored by the Ada Joint Program Office.

Appendix C The Congrassional Ada Mandate C1

Ada Programming Language. — The Departinent of Defense
developed Ada to reduce the cost of development and support of
software systems written in the hundreds of languages used by the
DOD through the early 1980s. Beside the training economies of
scale arising from a common language, Ada enables software cost
reduction in several other ways: (1) its constructs have been
chosen to be building blocks for disciplined software engineering;
(2) its internal checking inhibits errors in large systems lying
beyond the feasibility of manual checking; and (3) its separation of
software module interfaces from their implementations facilitates
and encourages reuse of already-built and tested program parts.
While each of these advantages is important, Ada’s encouragement
of software engineering is fundamental. Software practitioners
increasingly believe the application of engineering disciplines is
the only currently-feasible avenue toward controlling unbridled
software cost escalation in ever-larger and more complex systems.
In March, 1987, the Deputy Secretary of Defense mandated use of
Ada in DOD weapons systems and strongly recommended it for
other DOD applications. This mandate has stimulated the develop-
ment of commercially-available Ada compilers and support tools
that are fully responsive to almost all DOD requirements. How-
ever, there are still too many other languages being used in the
DOD, and thus the cost benefits of Ada are being substantially
delayed. Therefore, the Committee has included a new general
provision, Section 8084, that enforces the DOD policy to make use
of Ada mandatory. It will remove any doubt of full DOD transition
to Ada, particularly in other than weapons systems applications. It
will stimulate DOD to move forward quickly with Ada-based
software engineering education and cataloguing/reuse systems. In
addition, U.S. and commercial users have already expanded
tremendously the use of Ada and Ada-related technology. The
DOD, by extending its Ada mandate, can leverage off these com-
mercial advances. Navy Ada is considered to be the sume as Ada
for the purposes of this legislation, and the term Ada is otherwise
defined by ANSI/MIL-STD-1815. The Committee envisions that
the Office of the Secretary of Defense will administer the general
provision in a manner that prevents disruption to weapon systems
that are well into development. The Committee directs that appli-

cations using or currently planning o use the Enhanced Modular
Signal Processor (EMSP) be exempted from mandatory use of Ada
as a matter of policy.

C2 Appendix C The Congressional Ada Mandate

Appendix D
Ada vs. C++

On July 9, 1991, the Air Force released to the public a report of a business
case they conducted to determine under what circumstances a waiver to the DoD
Ada requirement might be warranted for use of C++, particularly in DoD’s Cor-
porate Information M«aagement (CIM) program. The report is titled, "Ada and
C++: A Business Case Aralysis."!

Since its release the report has meceived a great deal of publicity in various
newspapers and journals. The information that follows was excerpted from
remarks nade by Mr. Lioyd K. Mosemann, II Deputy Assistant Secretary of the
Air Force (Communicatiens, Computers, and Logistics), at a press conference
held July 9, 1091,

1. Introduction

There has never been any intention to question DoD’s commitment to Ada,
but only to identify when waivers for C++ might be warranted. This business
case will support thz development of DoD programming language policy for
information systems and C3 systc ms.

I might say at the outset that language comparison is not merely a scientific
issue: it evokes strong emotions as well, in that to a certain extent people adopt
"favorite” [anguages for reasons cther than purely dispassionate analysis, .nuch
as one n.t1zht not be able to explain why he/she roots for the Chicago Cubs or
drinks Cche rather than Pepsi. The task is also rendered difficult because there
arc yet no welf-established and standard methods for conducting such

! Those who have an account with the Defense Technical Information Center (DTIC) may
purchase "Ac'a and C++: A Business Case Analysis” from DTIC, Cameron Station., Alexandnia,
Virginia 2314, 773/.'714-7633; Order No. AD A253 087; Cost $20.82. All others may purchase it
fromy the National Technical Information Service (NTIS), U.S. Department of Commerce, 5825
Port Royal Road, Springfield, Virginia 22161, 703/487-4600C; Order No. AD A253 087; Cost
$43.00.

Appedix O Adavs. C 4+ D1

comparisons. For these reasons, we endeavored to make our study as quantita-
tive as possible, asking the best experts we could find to use a variety of methods
that have historically been used for business analysis in such tasks. We felt that
by using a variety of methods and comparing their results, we would avoid the
skewing that might result from the sole use of a single method.

In our business case, therefore, several different approaches were undertaken
to identify, from a business perspective, when the life cycle cost effectiveness of
C++ might be greater than that of Ada.

» The first, conducted by the Institute for Defense Analyses (IDA), examined
quantitatively the availability of tools and training for the two languages.

e The second, conducted by the Software Engineering Institute, applied to this
problem a quantitative language selection methodology developed by IBM
for the Federal Aviation Administration (FAA).

o The third, conducted by CTA, Inc., analyzed cost and cost analysis.

¢ And the fourth, conducted by the TRW Corporation, applied a standard cost
model in depth to both languages for a typical information systems/C3 pro-
ject (micro analysis).

o In addition, the Naval Postgraduate School (NPS) was asked to address the
overall policy issue of Ada, particularly in the context of emerging fourth-
generation language (4GL) software technology.

Each of the substudies reached the same conclusion: there are no compelling
reasons to waive the Ada requirement to use C++.

The business case analysis was directed at information systems and C3 sys-
tems. However, there is no reason to believe the resuits would differ for com-
puter programs embedded in weapons systems.

Let me now summarize for you the salient quantitative results of each study,
and I think you will understand more fully how we arrived at our conclusion.

1. Substudy Results.
A. Tools, Environments, and Training: IDA Substudy.

The Institute for Defense Analyses (IDA) collected and analyzed information
on the market availability of commercial- off-the-shelf products available from
U.S. sources for Ada and C++ compilers, tools, education, and training. The
study provided a large quantity o1 dermographic data. For example, there are 28
companies located in the U.S. that have Ada compilers with currently validated
status; 18 vendors offer C++ compilers. The Ada compiler vendors are more
likely to have been in business five years or more. Ada "validation" is more
rigorous than that of other high order languages: only Ada is monitored and

approved for conformity to a standard, without supersets or subsets, by a

Appendix D Ada vs. C++

government-controlled process. By contrast, no validation or even a standard of
any kind exists for C++, although a standard by 1994 is expected.

Both languages are supported on PCs and workstations. Ada is also sup-
ported on mainframes. Ada, but not C++, has cross compilation systems.

Ada is supported with program engineering tools. Compiler vendors provide
arich set. Code generators exist for Ada but none so far for C++. There is con-
siderable variability among C++ products in language features supported and
libraries provided.

Ada is taught in 43 states at 223 universities and 13 DoD installations. C++
1s taught in four states at four universities and no DoD installations. There are
more Ada than C++ courses available. The cost of training is about equal, but
Ada course variety is wider.

B. Faceted IBM Language Selection Methodology: SEI Substudy.

The Federal Aviation Administration (FAA) contracted with IBM in the
mid-1980s to evaluate high order languages for use on its Advanced Automation
System (AAS) Program. Inresponse, IBM developed a formal, quantitative
faceted methodology comparing 48 language features (criteria) in six categories,
This IBM study concluded that use of Ada was "in the ultimate best interest of
the AAS program and its goals, and that warrants coping with the temporary
risks/problems that loom large in the near term in order to reap the significant
benefits/payoffs over the long term."

Using this same methodology for each of the 48 criteria, the Software
Engineering Institute (SEI) evaluated Ada and C++ for application in informa-
tion systems/C3 systems. The original FAA weighted scores for the six criteria
categories were as shown in this matrix:

Category Max. Ada C Pascal JOVIAL FORTRAN
Capability 16.7 6.1 9.6 10.4 7.6 3.9
Efficiency 16.4 80 11.8 108 11.0 114
Aailability/Reliability 226 215 116 14.5 15.6 10.3
Maintainability/Extensibiiity 174 140 102 12.2 6.8 8.3
Lifecycle cost 11.3 8.2 74 7.8 4.9 5.2
Risk 16.6 8.8 8.9 7.6 9.6 8.2
Total 100.0 76.6 59.5 63.3 555 47.0

The 1991 weighted scores for the six criteria categories were:

Appendix D Ada vs, G++ D3

Category Max. Ada C++
Capability 16.7 153 11.3
Efficiency 16.4 10.7 10.9
Availability/Reliability 226 19.1 126
Maintainability/Extensibility 174 136 114
Lifecycle cost 11.3 8.4 8.0
Risk 15.6 11.7 9.8
Total 100.0 78.8 63.9

In 1985 Ada was considered considerably more capable than C. Today, the SEI
study found there is still a significant difference between Ada and C++, C's suc-
cessor. The relative efficiency of Ada has improved markedly; Ada still scores
significantly higher in availability/reliability; the Ada advantage in
maintainability/extensibility persists; and from a position of parity in 1985, Ada
has attained in 1991 a significant advantage over C++ in lowered risk.

An attachment lists numerous major Ada information systems/C3 systems. It
is not widely appreciated that such extensive use is now being made of Ada: in
fact, the Ada 9X Project Office reports that the U.S. Ada market, excluding train-
ing, services, and government research/development, now exceeds $1! billion.

C. Macro Cost Analysis: CTA Substudy.

CTA compiled and compared available productivity and cost data of Ada and
C++. Much of their data comes from Reifer Consultants’ extensive database, one
of the best, largest, and most current programming language cost databases now
available.

Average productivity across the four dornains for which data exists
{environment/tools, telecornmunications, test (with simulators) and other) for
both Ada and C++ projects is shown in this matrix. Note the productivity advan-

tage for Ada:

) Productivity ~ Number of

(ELOC/MM) Data Points
Norm (all languages) 183 543
a Average (Ada) 210 153
Average (C++) 187 23
. First project (Ada) 152 38
K First project (C++) 161 7

L - — 3

The C++ project data reflected informiition on 23 projects taken from seven firms
L who had been using C++, Unix, and object-oriented techmiques for over 2 years.
e All projects were new developments. Application size ranged from 25 to 500
4 KSLOCs (thousand source lines of code). Average size was about 100 KSLOC. &

i. N D4 Appendix D Ada vs. C++ g

The average costs across the four domains for both Ada and C++ projects are
shown in this matrix.

Cost Number of

(8/SLOC) Data Points
Cost (all languages) $70 543
Average (Ada) 65 153
Average (C++) 55 23

Typically, the Ada developments were performed in accordance with military
standards and incorporated formal reviews, additional documentation, and addi-
tional engineering support activities such as formal quality assurance (QA) and
configuration management (CM). Most C++ projects are commercial and do not
extensively incorporate such activities. Additionally, on such projects develop-
ers are typically intimately involved with users, resulting in considerably less
requirements engineering effort. Consequently, applications on which C++ is
used are inherently less costly, so that the reported productivity rates are favor-
ably skewed toward C++.

The average error rates across the four domains for both Ada and C++ pro-

jects were:
integration FQT Number of
Error Rates Error Rates Data
(Errors/KSLOC) (Errors/KSLOC) Points
Norm (all languages) 33 3 543
Average (Ada) 24 1 153
Average (C++) 31 3 23

The integration error rates include all errors caught in test from start of intcgra-
tion testing until completion of software Formal Qualification Test (FQT). The
FQT error rate includes only those errors found during the FQT process.

A so-called "transition state analysis" performed by Reifer's group indicates
that 26 of the 38 firms within the Ada database had successfully made the
changeover to effective use of Ada, while none of the 7 firms in the C++ data-
base had made the transition. Also, none of the 7 firms were fully using C++'s
inheritance and other advanced features.

The standardization maturity of Ada was found by the CTA to be particularly
important. While Ada has a firim and well policed standard, allowing neither
supersets nor subsets, it will be years before a stable C++ language specification
is established. New features are being considered for the latest standard C++
release. Vendors are likely to offer their own enhanced versions of C++ com-
pilers and CASE tools, complicating portability and reuse.

Appandix D Ada vs. C++

Finally, the original arguments for establishing a single programming
language for military applications were found to remain. Common training,
tools, understanding, and standards simplify acquisition, support, and mainte-
nance. The study concluded that after maturing for a decade, Ada's benefits have
been proven for all application classes. Ada projects have reported 15% higher
productivity with increased quality and double the average size. Normalizing
these data to comparable size projects would result in an expected Ada produc-
tivity advantage of about 35%. Ada should be the near term language of choice.
C++, the study felt, still needs significant maturing before it is a low risk solution
for a large DoD application.

D. Micro Cost Analysis: TRW Substudy.

TRW perfermed a tradeoff analysis that generalized recent corporate cost
analyses on a typical real-world information systems/C3 systems project. Their
study defined a set of maximally independent criteria, judged each language with
respect to those criteria, and then translated those judgments into cost impacts to
emphasize the importance of each criterion from a lifecycle cost perspective.
Results were translated into perturbations of Boehm's Ada COCOMO cost
model.

Rankings of the two languages based on this analysis are shown in this matrix
(0 = no support; 5 = excellent support), followed by a total score, a weighted sum
of the rankings based on weights determined by an expert panel:

D6 Appendix D Ada vs Ca .

Category Ada C++
Reliable S/W Engineering 4.5 3.2
Maintainable S/W Engineering 4.4 3.2
Reusable S/W Engineering 4.1 3.8
Realtime S/W Engineering 4.1 2.8
Portable S/W Engineering 3.6 2.9
Runtime Performance 3.0 3.6
Compile-Time Performance 2.3 3.1
Multilingual Support 3.1 24
OOD/Abstraction Support 3.9 4.6
Program Support Environment 441 2.1
Readability 4.4 29
Writeability 3.4 3.5
Large Scale S/W Engineering 4.9 3.3
COTS S/W Integration 2.8 3.6
Precedent Experience 3.6 1.5
Populatity 2.8 4.0
Existing Skill Base 3.0 1.8
Acceptance 2.5 3.3
Total Score for Mgt Info Systems 1631 1324
(Ada score is 23% higher)
Total Score for C3 Systems 1738 1401
(Ada score is 24% higher)

The study concluded that both Ada and C++ represent improved vehicles for
software engineering of higher quality products. Currently, C++ was estimated
to be approximately 3 years behind Ada in its maturity and tool support. The
case study used in this report (the Command Center Processing and Display
Sysiem-- Replacement) demonstrated development cost advantages for Ada on
the order of 35% and maintenance cost advantages for Ada on the order of 70%
under today’s technologies. In the far term (1994+), the study felt, this Ada
advantage might erode to approximately a 10% advantage in development costs
and 30% in maintenance costs for a typical development intensive system.,

The study listed the primary strengths of Ada as its support for realtime
domains and large scale program deveiopment. Its primary weaknesses are its
¢nmpile-tine and runtime efficiency. The primary strengths of C++ listed were
its support for better object oriented design, support for COTS integration, and
its compile-time and runtime efficiency. Its main weaknesses were identified as
its support for reliability and large scale program development. In general, the
swudy felt Ada’s weaknesses to be solved by ever-increasing hardware perfor-
mance and compiler technology advancement. C++ weaknesses, on the other
hard, remain to be solved by advances in its support environment.

E. Ada Policy Issues: NPS Study.

Appendix D Ada vs. C++

Concurrently with the preparation of this Ada and C++ Business Case
Analysis, the Naval Postgraduate School (NPS) reported on policy issues on the
use of Ada for Management Information Systems. Their report, an analysis of
the need to see Ada in a total and evolving context, is an important vision state-
ment leading from Ada as the primary third-generation language (3GL) to its
conception as the basis for evolving to higher levels of productivity in so-called
3 1/2 GL and 4GL environments,

Rather than concentrating on programming language selection, the NPS
report focuses on and argues for needed advances in software development tech-
nology. In particular, the Report contends, while traditional factors such as pro-
gramming language selection, better training, and computer-assisted software
engineering (CASE) toois can enhance productivity modestly, a fundamental
change in the software development paradigm will be necessary to achieve an
order of magnitude gain. Such a gain is possible through use of 4GLs, languages
that wiil ultimately enable the developer to define the complete design of an
application entirely in the 4GL's own high-level specification language. The
specification is then translated automatically by the 4GL into an executable pro-
gram. When accompanied by a productive development environment, an evolu-
tionary implementation methodology, and well trained development teams, the
report asserts, 4GLs can provide a tenfold gain in productivity.

An intermediate step cited by the report in the movement to 4GLs is 3 1/2 GL
programming, a term referring to the extensive use of CASE tools coupled with a
high level of code reuse. The 3 1/2 GL approach requires a strong commitiment
to codifying and accrediting code modules, to the point where it becomes easier
and more desirable to reuse code than to rewrite it.

Although experience with 4GLs has not yet been extensive (with existing
experience limited largely to specific functional domains such as financial
management and transaction processing), 4GLs are attractive for several reasons.
One is their robustness under change: changes made to the application, for what-
ever reason, are made at the specification level and then re- translated automati-
cally into executable code. Another is the facility with which they can be
integrated into tightly knit and full-featured development environments. For
these reasons, the report strongly recommends that the DoD discourage use of
traditional 3GL programming and take bold steps to incorporate the 4GL para-
digm.

Finally, the report recommends that, given the importance of Ada to DoD
software, greater effort and funding should be provided for the key Ada initia-
tives: the Ada Technology Iniprovement Program, Ada 9X, and Ada education
initiatives.

Two issues on 3 1/2 GLs and 4GLs related to this business case were outside
the scope of the NPS report. The first of these is that, for the foreseeable future,
state-of-the-art limitations will probably keep 4GLs from generating more than
half the total code required by most applications. Ii such cases, where a substan-
tial amount of 3GL programming will be required to complete application

D8 Appendix D Ada vs. C++

development, use of a 3 1/2 GL approach, rather than a 4GL approach, is prefer-
able.

Another issue outside the scope of the NPS Report was the evaluation of the
relative merits of Ada and C++ as target (output) languages for 4GL application
generators. However, as section V.C of the NPS report points out, a "standard,
stable target language portable to a variety of hardware platforms” with good
software reuse and interface definition capabilities is appealing. Although more
study of the characteristics desired in 4GL target languages is warranted, the SEI
and TRW substudies suggest no particular advantage of C++ over Ada in
software reuse and interface definition, so there appears no reason to waive
DoD’s Ada requirement in favor of C++ as a target language for 4GLs.

Iti. Conclusions.

All four substudies which specifically compared Ada and C++ (IDA, SEI,
CTA, TRW) report a significant near term Ada advantage over C++ for all
categories of systems. This advantage could be eroded as C++ and its support-
ing environments mature over the next few years. On the other hand, as aggres-
sive overseas Ada initiatives stimulate even wider domestic Ada interest, as Ada
tools/environments further mature, and when the Ada update (Ada 9X) is com-
plete, the balance could tip further in Ada’s favor.

Adding to the case for Ada is the fact that the Ada scoring so well in the busi- -
ness case was Ada’s 1983 version, MIL-STD-1815A. Just as C++ incorporates :
into C certain software engineering concepts already in Ada (e.g., modularity,
strong typing, specification of interfaces), so an Ada update now underway will
bring into Ada selected features now included in C++. This update, known as
the Ada 9X Project, is targeted for completion in 1993, The product of extensive
community involvement (including the C3 and MIS communities), Ada 9X will
bring to Ada such improvements as decimal arithmetic, international character
sets, improved input/output, support for calls between Ada and other languages,
further representation specifications, and inheritance/polymorphism (popular
features of C++). The Ada 9X Project Office lists one of the goals of Ada 9X as
"to provide all the flexibility of C++ with the safety, reliability, and understanda-
bility of Ada 83."

At the same time, Ada 9X has been designed so that neither existing Ada
benefits nor performance will be lost. For example, Ada 9X inheritance will be
controlled so as not to reduce lifecycle supportability. Some have criticized :
OOP features such as inheritance as potentially dangerous to DOD software mis-
sion goals (such as safety, reliability, and dependability).

Bjarne Stroustrup himself, the originator of C++, has been quoted as follows:
"C makes it easy for you to shoot yourself in the foot. C++ makes that harder,
but when you do, it blows away your whole leg."

In summary, it is not possible to make a credible case for the existence of
classes of "more cost effective” C++ systems compared to Ada. Business cost

Appendix D Adavs. C++ D9

effectiveness data collected for this study are typified by the TRW study’s con-
clusion that Ada provides development cost advantages on the order of 35% and
maintenance cost advantages on the order of 70%. In terms of full lifecycle
costs, it will be some time before data exists which could justify a cost savings
for C++. Today, there is limited lifecycle data available for Ada and almost none
for C++.

For the foreseeable future, then, this business case shows that there are more
than enough reasons for the DoD to stick firmly with Ada, both for all high order
language (3GL and 3 1/2 GL) development and for exclusive use as a target
language of 4GL application generators in the large class of applications for
which 3GL code must supplement generated code.

D10 Appendix D Ada vs. G4+

Appendix E
Selected Ada Vendors

Company:

Products:

Address:

Company:

Products:
Address:

Company:

Products:
Address:

Company:

Products:
Address:

Company:

Products:

Address:

AdaSoft

AdaManager/AdaQuest, AdaMentor Computer Managed Instruc-
tion System, Graphical Modeling System (SL-GMS), AdaSoft
Graphical User Interface (GUI), AdaSoft Textual User Interface
(TUID).

AdaSoft, Inc., §750-9 Cherry Lane, Laurel, MD 20707; Voice:
(301) 725-7014; FAX: (301) 725-0980.

AETECH

Ada Workstation Environment (AWE), XAda APSE.
AETECH, 5841 Edison Place, Suite 110, Carlsbad, CA 92008;
Voice: (619) 431-7714; FAX: (619) 431-0860.

Alsys

Ada compilers for a variety of platforms.

Alsys, Inc., 67 S. Bedord St., Burlington, MA 01803-5152; Voice:
(617) 270-0030; FAX: (617) 270-6882.

Cadre Technologies

Teamwork (software engineering tool set).

Cadre Technologies, 222 Richmond Street, Providence, R1 02903;
Voice: (401) 351-CASE; FAX: (401) 351-7380.

Caine, Farber & Gordon

PDL/81, a program design language which aids in the design and
documentation of software, Itis available for DOS, UNIX, and
VAX platforms.

Caine, Farber & Gordon, Inc., 1010 East Union Street, Pasadena,
CA 91106r; Voice: (800) 424-3070; Voice: (818) 449-3070; FAX:
(818) 440-1742.

Appendix £ Selected Ada Vendors E1

Company: Dynamics Research Corporation

Products: AdaMat.

Address: Dynamics Research Corporation, 60 Frontage Road, Andover,
MA 01810; Voice: (800) 522-7321.

Comipany: EVB Software Engineering

Products: Complexity Measurement Tool (CMT), GRAMMI (interface
builder).

Address: EVB Software Engineering, 5303 Spectrum Drive, Frederick, MD
21701; Voice: (301) 695-6960; FAX: (301) 695-7734.

Company: Fastrak Training

Products: Ada training and consulting.

Address: Quarry Park Place, Suite 300, 9175 Guilford Road, Columbia,
MD 21046-1802; Voice: (301) 924-0050; FAX: (301) 924-3049.

Company: Idaho National Engineering Laboratory

Products: AdaSAGE.

Address: Idaho National Engineering Laboratory, EG&G Idaho, Inc., Spe-
cial Applications Unit, P. O. Box 1625, Idaho Falls, ID 83415-
1609; Voice: (208) 526-0656.

Company: Interactive Development Environments
Products: Software Through Pictures (Ada development environment).
Address: Interactive Development Environments 595 Market Street, 10th

Floor, San Francisco, CA 94105; Voice: (800) 888-IDE1; Voice:
(415) 543-0900; FAX: (415) 543-0145.

Company: Irvine Compiler Corporation

Products: ICC Ada, an Ada compiler for the HP 9000 Models 300, 400, 700,
and 800, as well as a number of cross compilers.

Address: Irvine Compiler Corporation, 34 Executive Park, Suite 270,
Irvine, CA 92714; Voice: (714) 250-1366; FAX.: (714) 250-0676;
E-mail: jkohli@irvine.com.

Company: Meridian Software Systems

Products: The AdaVantage compiler for PCs and some UNIX workstations.

Address: Meridian Software Systems, 10 Pasteur St., Irvine, CA 92718;
Voice: (800) 221-2522; Voice: (714) 727-0700, FAX: (714) 727-
3583.

Company: R. & R. Software

Products: Ada compilers for PCs.

Address: R. & R. Software, Inc., P. O. Box 1512, Madison, WI 53701;
Voice: (800) 722-3248; Voice: (608) 244-6436.

Company: Rational
Products: The Rational Environment, Rational Rose.

E2 Appendix E Selected Ada Vendors

Address:

Company:.

Products:
Address:

Company:

Products:

Address:

Rational, 2800 San Tomas Expressway, Santa Clara, CA 95051-
0951; Voice: (408) 496-3600; FAX: (408) 496-3636.

P. P. Texel & Company

Ada training and consulting.

Victoria Plaza, Building 4, Suite 9, 615 Hope Road, Eatontown,
NJ 07724, Voice: (908) 922-6323.

Verdix Corporation

self-hosted compilers (VADSSelf), cross compiiers (VADSCross),
and Ada Programming Support Environment (VADS APSE).
Verdix Corporation, 14130-A Sullyfield Circle, Chantilly, VA
22021; Voice: (703) 318-5800.

Appendix E Selected Ada Vendors E3

E4 Appendix E Selected Ada Yendors

Appendix F
Ada-Related Organizations

Organization: ACM Special Interest Group on Ada (SIGAda)

Synopsis: ACM, founded in 1947, is the oldest of association for computing
professiona’s. It sporsors a number of special interest groups
(SIGs) of which SIGAda is one. SIGAda promotes interest in and
study of the Ada programming Janguage. Its monthly publication
is Ada Lerters \$20/year for ACM members, $42/year others).

POC Mark Gerhardt, ESL, Inc., 495 Java Drive, MS M507, Sunnyvale,
CA 94088-3510; VOICE: (408) 752-2459; E-mail:
gerhardt@ajpo.sei.cmu.edu.

Organization: Ada Joint Program Office (AJPO)

Synopsis: The Ada Joint Program Office (AJPO) was established in
December 1980. Its activities include validating Ada compilers,
supporting the development and distribution of software tools for
Ada, and ensuring that Ada-related efforts of the various services
complement, not duplicate, one another. In this capacity, AJPO is
responsible for managing efforts to provide training and life-cycle
support for Ada. :

POC: John Solomond, The Ada Joint Program Office, The Pentagon,
Room 3E114, Washington, DC 20301-3080; Voice: (703) 614-
0208; E-mail: solomond@ajpo.sei.cmu.edu.

Organization: Software Engineering Institute (SEI)

Synopsis: Realizing that the defense of the U.S. is increasingly dependent
on computer-based systems, the DoD established the Software
Engineering Institute (SEI) at Camegie Mellon University in
December 1984. The SEI staff, drawn from academia, govern-
ment, and indistry. consists of approximately 250 technical and
support personnel. They are engaged in various research and
development activities designed to improve the quality of
software systems and of the software engineering process. The
ultimate goal of the SEI is to change this process from a labor-

Appendix F Ada-Relatad Organizations

F1

intensive craft to a well-managed mass-production oriented
activity.

POC: Customer Relations, Software Engineering Insutute, Cameie
Mellon University, Pattsburgh, PA 15213-3890; Voice (412)
268-5800.

Orgamzation Software Technology Support Center (STSCO)

Synopsis’ The STSC. located at the Ogden Air Logistics Center (AFMO),
Hill Air Force Base, Utah, was established by HQ USAL 1o pro-
mote development and munagement of teols, methods, and
environments for software production throughout the services

PO Suftware Technoiogy Support Center. Aun Customer Senvace.
OO-ALC/TISE, Hilt AFB. UT 83056, Voace (801 7778048
FAXN (801 778000

F2 Arien3r b Ads finates Crparraton

Appendix G
Ada Events Calendar!

The Ada bvents Calendar includes intormation on upcomung Ada conter-
ences. etc 1t hists only those programs with fixed dates, and does not include
programs, such as classes, that are scheduled on d conunuing basis. Note, how -
tver. that many. if not most, of the conferences huted below are conducted on an

annula basyy

Date October 5-7, 1992

kvent o6th SEI Conference on Sofiware Engineering Education
Location Hyatt Islandia Hotel, San Diego, Califormia

Sponsor Software Engineering Insutute

Syaopas The SEI Conference on Software Engineering Education is an

annual conference that bnngs together educators from universi-
ues. industry. and govermnment to discuss issues related to the con-
tent, structure, and delivery of software engineering education.
The conference format includes referred papers, panel discus-
ston, reports, tutorials, and workshop sessions.

POC: Mary Ellen Rizzo, Sofiware Engineering Institute, Camegie Mel-
lon University, Pittsburgh, PA 15213; Tel: 412/268-3007; FAX:
412/268-5758; Internet: mer@sei.cmu.edu.

———— —

Date: October 14-15, 1992

Event ASIS Technical Meeting

Location: Institute for Defense Analyses (IDA), Alexandria, VA
Sponsor: IDA

POC: Clyde Robey, IDA, Tel: 703/845-0666.

: Copynght 1992 11T Research Institute. All rights assigned to the U.S. Government (Ada Joint
Program Office) Permission to repnnt this fiyer, in whole or in part, is granted, provided the
AdalC 1s acknowledged as the source. If this flyer is reprinted as part of a published document,
please send a countesy copy of the publication to AdalC, c/o IIT Research Institute, 4600 Forbes
Boulevard. Lanham, MD 20706-4320. The AdalC is sponsored by the Ada Joint Program Office.

Appanchx G Ada Everds Caendar Gi

Date: QOctober 14-15, 1992

Event: Ada UK International Conference

Location: Britannia International Hotel, London

Sponsor: Ada Language UK, Ltd.

POC: Helen Byard, Admunistrator, Ada UK, P.O. 322, York YOI 3GY.
England; Tel: (UK) 0904 412740; Fax: (UK) 0904 426702,

Date: November 9-13, 1992

Event: Third Eurospace Ada in Aerospace Symposium

Locauon: Vienna, Austna

POC. Ms. Rosy Plet, Eurospace, 16 bis, Avenue Bousquet, F-75007
Pans, France; Tel: +33-1-45 55 83 53; Fax: +33-1-45 51 99 23

Date: November 16-20, 1992

Event: TRI-Ada "92

Location: Orange County Convention Center. Orlando. FL.

Synopsis: The annual TRI-Ada Conference and Exposition 1s the Ada

community's largest and most presuigious event. TRI-Ada, as its
name imphes, reaches out and brings together three broad bases
in the Ada community —government, industry, and acadenua~-
with a program that covers all issues of imporiance to Ada
interests. The theme for this year's conterence s, **The Business
of Adu."”

POC: TRI-Ada '92, Danieli & O'Keefe Associates, Inc., Conference
Management, Chiswick Park, 490 Boston Post Road, Sudbury,
MA 01776 USA

Date: December 2-3, 1992

Event: NASA/GSFC Software Engineering Laboratory (SEL) 7th Annual
Software Engineering Workshop

Synopsis: The workshop is an annual forum where sofiware practitioners

exchange information on the measurement, utilization, and
evaluation of softwarc rnethods, modeis, and tools. There will be
a presentauon of approximately 15 papers. Papers are being soli-
cited which include the following topics: experiments in software
development or management; experiences with software tools,
models, methodologies; software measures; software reuse;
software process assessment and improvement.

POC: Mr, Mark Cashion, NASA/Goddard Space Flight Center, Code '
552, Greenbelt, MD 20771, USA; Phone: (301) 286-6347; FAX:
(301) 286-9183 <

Date: December 7-11, 1992

Event: Toulouse '92: Fifth International Conference on Software
Engineering & Its Applications

Location: Toulouse, France

Synopsis: Methods, tools, standards, and organization are the major aspects

of software engineering covered by the conference. The confer-
ence will include tutorials, exhibits, and an industrial forum.

G2 Appendix G Ada Events Calendar

POC:

Date:
Event:

Location:
Sponsors:
Synopsis:

Date:
Event:

Date:
Event:

Location:

Synopsis:

POC:

Date:
Event:

L.ocation:
Synopsis:

POC:

Jean-Cleaude Rault, EC2, 269 rue de la Garenne, F-92024 Nan-
terre Cedex, France; Tel: +33-1-47 80 70 00; Fax: +33-1-47 80 66
29

December 8-10, 1992

STARS '92

Omni Shoreham Hotel, Washington, D.C.

STARS, Boeing, IBM, Paramax

Megaprogramming concepts, the firm foundation in products,
relevant successes, and upcoming plans will be discussed at the
program. Integration of process and reuse within the Software
Technology for Adap‘able Reliable Systems (STARS) environ-
ment will be demonstr.ted. There will be exhibits of megapro-
gramming work in progi 2ss by STARS as well as affiliates and
subcontractors. Evening ieceptions will facilitate networking
with government and industry leaders.

The STARS '92 Conference Center, 3 Church Circle - Suite 194,
Annapolis, MD 21401, Fax: (410) 267-C332; E-Mail: STARS92-
Desk @ STARS.Rossyln.Unisys.com

December 10, 1992
Ada's Birthday

March 15-18, 1993

1 1th Annual National Conference on Ada Technology
Williamsburg Hilton and National Conference Center, Willi-
amsburg, Virginia.

The emphasis for this conference will be software engineering,
while continuing to emphasize Ada as an important building
block. Papers on applied aspects of software engineering and also
experimentation and research are being accepted. Presenters must
register for the Conference.

ANCOAT 93, c/o Rosenberg & Risinger. 11287 W Washingtc .
Blvd., Culver City, CA 90230, (310) 397-6338

March 21-23, 1993

S5th Annual Oregon Workshop on Software Metrics

Silver Falls State Conference Center, Portland Oregon

The Annual Oregon Workshop on Software was founded to allow
the interchange of ideas and experiences be:ween those using
metrics and those performing research in «ne area. Call for parti-
cipation is sought from both practitioners and researchers. Parti-
cipation may consist of delivering a paper, organizing and leading
a panel session, or leading a mini-tutorial on some aspect of
software measurement.

Warren Harrison, Center for Software Quality Research, Portland
State University, Portland, OR 97207-0751; (503) 725-3108;
warren @cs.pdx.edu

Apperdix G Ada Events Calendar G3

Date: March 24-26, 1993

Event: Second International Workshop on Software Reusability
Location: Lucca, Italy

Sponsors: IEEE Computer Society, ACM SIGSOFT

Synopsis: The themes for tkis year’s workshop include methods, tools and

environments, reuse library methods, generative approaches to
reuse, constructive approaches to reuse, theoretical aspects of
reuse, organizational and management techniques for implement-
ing reuse, domain analysis methods and techniques. Attendance
is limited to 100.

Date: April 18-23, 1993

Event: Fifth Annual Software Technology Conference

Location: Red Lion Hotel & Salt Palace Convention Center, Salt Lake City,
Utah

Sponsors: U.S. Army, U.S. Navy, U.S. Air Force

Theme: Software - The Force Multiplier

Synopsis: The program will include tutorials, vendor demonstrations,

presentations, and "birds-of-a-feather" discussion groups. The
theme for this year's conference is, ' ‘Software - The Force Multi-
plier.”" General sessions will address management information
systems, embedded computers, and command and control. Pro-
posed topics for presentations include reuse, environments, Ada
implementation, software inspections, change management,
object oriented programming, automated software process enact-
ment, metrics, re-engineering, software engineering, software
maintenance, DoD software initiatives, configuration manage-
ment, and software process improvement.

POC: Dana Dovenbarger, Conference Manager, Software Technology
Support Center, OO-ALC/TISE, Hill AFB, UT 84056; Phone:
(801)777-7411, DSN 458-7411; FAX: (801) 777-8069

Date: May 17-21, 1993

Event: ICSE: 15th International Conference on Software Engineering

Location: Baltimore, MD.

Sponsor: IEEE Computer Society Technical Committee on Software
Engineering and ACM Special Interest Group on Software
Engineering.

Date: June 14-18, 1993

Event; Ada Europe

Location: Paris, France

POC: Ada Europe '93, AFCET, 156 Bd. Pereire, 75017 Paris, France

Date: September 18-23, 1993

Event: TRI-Ada '93

Location: Seattle, Washington

Synopsis: The theme for the 1993 conference is, *The Management and

Engineering of Software."’

G4 Appendix G Ada Events Calendar

Appendix H
Glossary of Acronyms

ACE
ACM
ACVC
Ada
ADA
ADA
Ada-IC
AdaJUG
AlC
ALRM
AJPO
ANNA
APSE
ASAP
ASEET
ASR
ATIP
CAIS
CARDS
CASE
CMU
COSMIC
CREASE
DACS
DARPA
DIANA
DID
DTIC
FIPS
GRACE
GRAMMI
HOL

Ada Command Environment (STARS)

Association for Computing Machinery

Ada Compiler Vaiidation Capability (AJPO)

Not an acronym

American Dental Association

Americans with Disabiiities Act

Ada Information Clearinghouse

Ada Joint User’s Group

Adz Information Clearinghouse

Ada Language Reference Manual

Ada Joint Program Office

ANNotated Ada (Stanford University)

Ada Progi mming Support Environment

Ada Static source code Analyzer Program

Ada Software Engineering Education and training Team
Ada Software Repository

Ada Technology Insertion Program (AJPO)

Common APSE Inierface Set

Central Archive for Reusable Defense Software
Computer Aided Software Engineering
Camegie-Meilon University

COmputer Software Management a: Information Center (NASA)
Catalog of Resources for Education 1in Ada and Software Engineering
Data and Analysis Center for Software

Defense Advanced Research Projects Agency
Distributed Intermediate Attributed Notation for Ada
Data Item Description

Defense Technical Information Center

Federal Information Processing Standard

Generic Reusable Ada Components for Engineering (EVB)
Generated Reusable Ada Man Machine Interface (ESL)
High Order L.anguage

Appandix H Giossary of Acronyms

H1

HOLWG High Order Language Working Group

IDD Interface Design Document
IEEE Institute for Electrical and Electronic Engineers
IEEE CS IEEE Computer Society
IPSE Integrated Project Support Environment
KAPSE Kernel APSE
KIT KAPSE Interface Team
KLOC Thousand LOC
LOC Lines Of Code
LRM Language Reference Manual
MAPSE Minimal APSE
MIL-STD Military Standard
NBS National Bureau of Standards (obsolete, now NIST)
NISE NASA Initiative on Software Engineering
NIST National Institute for Standards and Technology (formerly NBS)
NUMWG NUMerics Working Group (SIGAda)
00 Object Oriented
O0A Object Oriented Analysis
00D Object Oriented Design
oopP Object Oriented Programming
00SsD Object Oriented Structured Design
PCTE Portable Common Tool Ervironment (ESPRIT)
PDL Program Design Language
PIWG Performance Issues Working Group (SIGAda)
RADC Rome Air Development Center
RIACS Research Institute for Advanced Computer Science (NASA)
SAME SQL Ada Module Extension
SDD Software Design Documemnt
SE Software Engineering
SEI Software Engineering Institute (Carmegie Mellon University)
SGML Standard Generalized Markup Language
SIGAda Special Interest Group on Ada (ACM)
SIGPLAN Special Interest Group on Programming LANguages
SIGSOFt Special Interest Group on SOFTware
SQA Software Quality Assurance
SJPO STARS Joint Program Office
STARS Software Technology for Adaptable Reliable Systems
STSC Software Technology Support Center
VADS Verdix Ada Developmeni System (Verdix)
WADAS Washington Ada Symposium
H2 Appondix H Glossary of Acronyms

]

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporling burden tor this collection of information is wsitmated to mverage 1 hour per response. including the lime for revisewing (nsiruclions, ssarching existing data sources
gathering and maintaining the dala needed. and compleling and reviewing the collestion of information Send comments regarding this burden estimate or any other aspect of this
collschion of infor:natien, Including suggestions for reducing this burden. 1o Washington Headquarters Services. Directorate lor tntormation Qperations and Repolfts. 1215 Jeflorson
Davis Highway. Suite 1204, Arlington. VA 22202-4302, and to the CMce of Msnapemen! and Budgel, Paperwork Reduction Project {0704-0188) Washington, DC 20503

2. REPORT DATE
September 1994

1. AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATES COVERED

Finul Report

4. TITLE AND SUBTITLE

Transition to Ada

| 5. FUNDING NUMBERS

6. AUTHOR(S)

William A. Ward, Ir.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Faculty Court West 20

School of Computer and Information Sciences
University of South Alabama

Mobile, AL 36688

8. PERFORMING ORGANIZATION
AEPORT NUMBER

Technical Report
USA/CIS-94-TR-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Information Technology Laboratory
U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Technical Report
ITL-94-8

11. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road. Springfield, VA 22161,

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

use of Ada.

This report addresses issues relevant to the transition to the use of Ada from a Corps of Engineets perspective.
The direct discussion of these issues is preceded oy background material on Ada itself. First, the Department
of Defense (DoD) software crisis that led to the development of Ada is described and the causes underlying it
are discussed. Next, a brief history of Ada is presented to show how it fits into the Government's approach to
meeting the crisis. This includes a discussion of the guidelines which apply to the use of Ada, specifically the
Congressional mandate to use Ada and the pertinent DoD and Army regulations. The second major section of
this report discusses the Corps transition to Ada. This transition will involve not only a change in the program
ming language used by the Corps, but also a change in development philosophy; software engineering princi-
ples must be incorporated into the development process for the transition to be successful. The various issues
to be addressed by the Corps in order to accomplish this are then presented. The report concludes with recom-
mendations concerning practical steps Corps development sites can take to ensure a successful transition to the

14. SUBJECT TERMS

Ada. software engineering, Rational Environment

15. NUMBER OF PAGES
104

| 16. PRICE CODE
t

n

OF REPORY

H OF TH!S PAGE
'l UNCLASSIFIED]

| OF ABSTRACT
UNCLASSIFIED |

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION |18. SECURITY GLASSIFIGATION | 20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500

Standard For1 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

